
Diss. ETH No. 29663

A Composable Treatment of
Anonymous Communication

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Fabio Matteo Banfi
MSc ETH in Computer Science, ETH Zurich

born on June 21, 1990
citizen of Lugano TI, Switzerland

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Prof. Dr. Dennis Hofheinz, co-examiner
Prof. Dr. Daniele Venturi, co-examiner

2023





Acknowledgements

First and foremost, I would like to express my deep gratitude to my advisor
Ueli Maurer for granting me the opportunity to further explore my passion
for cryptography by pursuing a PhD in his group. His constant striving
for abstraction and minimality heavily influenced my way of thinking and
working. Through the innumerable interesting and insightful discussions
we had, both scientific and not, and thanks to his constant encouragement
and support, I have acquired a plethora of knowledge that I can apply
both at work and in my personal life.

Sincere thanks go to Dennis Hofheinz and Daniele Venturi for co-
refereeing this thesis. The final version greatly benefited their careful
review and valuable feedback.

I would also like to address special thanks to Stefan Wolf, Willi
Meier, Sandro Coretti, and Christian Badertscher, who helped steering
my professional journey towards cryptography before my doctoral studies.

For all the fruitful and on-going collaborations, both inside and outside
the scope of this thesis, I thank Christian Badertscher, Jesus Diaz Vico,
Konstantin Gegier, Martin Hirt, Ueli Maurer, Christopher Portmann,
Guilherme Rito, and Jiamin Zhu, as well as all the students I had the
pleasure of supervising, Ganyuan Cao, Sina Ghaseminejad, Silvia Ritsch,
and Frederik Semmel.

I also want to thank Claudia Günthart, Bernadette Gianesi, and Denise
Spicher for their administrative support.

For all the interesting discussions, both about research and life, all
the passionate foosball matches, exciting summer retreats in Magliaso,
conferences and workshops, and all the other good times we had together, I
thank all the current and former members of the Information Security and
Cryptography Research Group: Christian Badertscher, Gianluca Brian,



iv ACKNOWLEDGEMENTS

Giovanni Deligios, Konstantin Gegier, Yijun He, Martin Hirt, Daniel Jost,
David Lanzenberger, Chen Da Liu-Zhang, Christian Matt, Ueli Maurer,
Eleanor McMurtry, Marta Mularczyk, Hai Hoang Nguyen, Christopher
Portmann, Guilherme Rito, Daniel Tschudi, and Jiamin Zhu.

I want to further extend my thanks to several members of the other
Cryptography and Distributed Systems groups at ETH, who contributed to
making my journey even more enjoyable. For all the hikes, dinners, game
nights, partying, foosball, tennis, table-tennis matches, and innumerable
interesting lunch discussions, I thank Matilda Backendal, Cecilia Boschini,
Nicholas Brandt, Suvradip Chakraborty, Andrei Constantinescu, Sebastian
Faller, Francesca Falzon, Mia Filić, Diana Ghinea, Sofia Giampietro, Laura
Hetz, Kristina Hostáková, Julia Kastner, Karen Klein, Roman Langrehr,
Varun Maram, Lenka Mareková, Matteo Scarlatta, Jakub Sliwinski, Kien
Tuong Truong, Anupama Unnikrishnan, Bogdan Ursu, Akin Ünal, Yann
Vonlanthen, and Shannon Veitch.

Besides my colleagues at ETH, I would also like to thank all the
wonderful people who made my life in Zurich all these years so enjoyable.
While it is impossible to list them all, sincere gratitude goes to Alessio,
Ana, Anna, Adrian, Carina, Daniele, Eleonora, Gianluca, Guido, Katja,
Larissa, Leilah, Linus, Lisa, Luca d. T., Luca R., Matteo, Paolo, Sasha,
Sofia, Susi, and Svenja.

Last but not least, I would like to express my deepest gratitude to my
family. For their continuous love, encouragement, and support, heartfelt
thanks go to my parents Sandra (with Sebastiano) and Giovanni (with
Fernanda), as well as my sisters Joyce, Melanie, and Lia. To Melanie
special thanks for being a fantastic flatmate for all these years.



Abstract

The goal of this thesis is complete the composable study of anonymity
in the framework of Constructive Cryptography (CC) of Maurer and
Renner. In CC, anonymity is modeled by considering a channel resource
that does not leak the identity of senders/receivers to the adversary (but
in the case of multiple senders, still might reveal their identities to the
receiver(s)). In the literature, this problem has been already partially
solved: For example, Kohlweiss et al. considered the setting where one
sender and multiple receivers want to communicate over an insecure and
anonymous channel, in a way that achieves confidentiality, but crucially
while preserving anonymity.

They showed that public-key encryption schemes that are ciphertext-
indistinguishable, key-indistingushability, and weakly-robust under a
chosen-ciphertext attack enable the construction of a confidential and
anonymous channel from one that is insecure but otherwise anonymous. In
a follow-up work by Alwen et al., the dual setting of multiple senders and
one receiver was analyzed. There, the authors showed that message au-
thentication code schemes that are unforgeable and key-indistinguishable
under a chosen-message attack enable the construction of an authenti-
cated and anonymous channel from one that is insecure but otherwise
anonymous. The analysis of similar guarantees achieved by symmetric-key
encryption and signatures was left open.

In this thesis we complete the picture by filling the above mentioned
gaps in the study of anonymity preservation, and also considering the
additional but related problem of anonymity creation. We do so by
first putting forth a new abstract framework which casts conventional
(both game-based and composable) security definitions as substitutions of
systems. This framework allows for clean syntactic proofs of security and
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potentially enables automated verification. We see this framework as an
additional contribution by itself, and we use it consistently throughout
this thesis.

Armed with this new framework, in the first part we begin by showing
that in the setting of multiple senders and one receiver, (probabilistic)
symmetric-key encryption schemes that are ciphertext-indistinguishable
and key-indistingushability under a chosen-plaintext attack enable the
construction of a secure and anonymous channel from one that is au-
thenticated but otherwise anonymous. Moreover, we also show that
(probabilistic) authenticated encryption schemes that are ciphertext-
indistinguishable, ciphertext-unforgeable, and key-indistingushability un-
der a chosen-ciphertext attack enable the construction of a secure and
anonymous channel from one that is insecure but otherwise anonymous.

In the second part, we consider again the setting of multiple senders
and one receiver, but move our attention to the problem of enabling
the construction of an authenticated and anonymous channel from one
that is insecure but otherwise anonymous using public-key cryptography.
Intuitively, some form of anonymous signatures should be employed, but we
begin by showing that this exact construction is impossible in the intuitive
public-key setting required by regular signatures (that is, if in addition
to the insecure and anonymous channel, only a one-time authenticated
channel from the senders to the receiver is assumed). We therefore provide
three alternative constructions which provide some trade-offs between
authenticity and anonymity (of the senders), by considering bilateral
signatures (a new type of scheme that we introduce), partial signatures,
and ring signatures. The first construction, using bilateral signatures,
assumes an additional one-time authenticated channel from the receiver
to the senders; the second construction, using partial signatures, enables
the construction of a weaker version of the authenticated and anonymous
channel, that is, a channel that can be interpreted as being selectively
anonymous towards the eavesdropping adversary and the receiver; the
third construction, using ring signatures, enables the construction of an
authenticated channel that is not only anonymous towards the adversary,
but towards the receiver as well, that is, the identity of the senders will
also not be leaked to the receiver.

Finally, we consider the challenging problem of constructing a secure
and anonymous channel from channels that are only authenticated, but
crucially not anonymous. We begin by reconsidering game-based notions
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of security for universal re-encryption (URE) recently introduced by
Young and Yung, and pointing out that they do not minimally capture
the essence of URE, which we identify as being unlinkability. We finally
show how URE in principle enables the construction of a secure and
anonymous channel from channels that are only authenticated, by first
obtaining a channel that is unlinkable.





Riassunto

L’obiettivo di questa tesi è quello di completare lo studio composizionale
dell’anonimato nel contesto della crittografia costruttiva (CC) di Maurer
e Renner. In CC, l’anonimato è modellato considerando una risorsa di
canale che non rivela l’identità dei mittenti/destinatari all’avversario (ma
che, nel caso di mittenti multipli, potrebbe comunque rivelare la loro
identità ai destinatari). Nella letteratura, questo problema è già stato
parzialmente risolto: Ad esempio, Kohlweiss et al. hanno considerato il
caso in cui un mittente e molteplici destinatari vogliano comunicare su
un canale insicuro e anonimo, in modo da ottenere la confidenzialità, ma
soprattutto preservando l’anonimato.

Hanno dimostrato che i cifrari a chiave pubblica che hanno indistin-
guibilità dei crittotesti, indistinguibilità delle chiavi, e sono debolmente
robusti sotto un attacco a crittotesto scelto, consentono di costruire un
canale confidenziale e anonimo da uno che è insicuro ma altrimenti anoni-
mo. In un lavoro successivo di Alwen et al., è stato analizzato lo scenario
duale di molteplici mittenti e un destinatario. Gli autori hanno dimostrato
che gli schemi di codici autenticatori di messaggio che sono inforgiabile e
hanno indistinguibilità delle chiavi sotto un attacco a messaggio scelto
consentono di costruire un canale autenticato e anonimo da uno che è
insicuro ma altrimenti anonimo. L’analisi di garanzie simili ottenute dai
cifrari a chiave simmetrica e dalle firme digitali è rimasta aperta.

In questa tesi completiamo il quadro colmando le lacune sopra men-
zionate nello studio della conservazione dell’anonimato e considerando
anche il problema aggiuntivo, ma correlato, della creazione dell’anonimato.
Lo facciamo proponendo prima di tutto un nuovo modello astratto che
presenta le definizioni di sicurezza convenzionali (sia basate su giochi che
componibili) come sostituzioni di sistemi. Questo modello permette di
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ottenere dimostrazioni sintattiche della sicurezza e potenzialmente con-
sente una verifica automatizzata. Consideriamo questo modello come un
contributo aggiuntivo di per sé, e lo utilizziamo coerentemente in tutta la
tesi.

Armati di questo nuovo modello, nella prima parte mostriamo che, nel-
lo scenario con molteplici mittenti e un ricevitore, i cifrari (probabilistici)
a chiave simmetrica che hanno indistinguibilità dei crittotesti e indis-
tinguibilità dalla chiave sotto un attacco a messagio scelto consentono
di costruire un canale sicuro e anonimo da uno che è autenticato ma
altrimenti anonimo. Inoltre, dimostriamo anche che i cifrari autenticati
(probabilistici) che hanno indistinguibilità dei crittotesti, sono inforgiabili,
e hanno indistinguibilità dalla chiave sotto un attacco a crittotesto scelto
permettono di costruire un canale sicuro e anonimo da uno che è insicuro
ma altrimenti anonimo.

Nella seconda parte, consideriamo ancora una volta lo scenario con
molteplici mittenti e un ricevitore, ma spostiamo la nostra attenzione sul
problema di consentire la costruzione di un canale autenticato e anonimo
da uno insicuro ma altrimenti anonimo utilizzando la crittografia a chiave
pubblica. Intuitivamente, si dovrebbe utilizzare una qualche forma di firma
digitale anonima, ma iniziamo mostrando che questa costruzione esatta
è impossibile nello scenario a chiave pubblica intuitivamente richiesto
dalle regolari firme digitali (cioè, se oltre al canale insicuro e anonimo, si
assume solo un canale autenticato una tantum dal mittente al destinatario).
Forniamo quindi tre costruzioni alternative che offrono un compromesso
tra autenticità e anonimato (dei mittenti), considerando le firme digitali
bilaterali (un nuovo tipo di schema che introduciamo), le firme digitali
parziali e le firme digitali ad anello. La prima costruzione, che utilizza
firme digitali bilaterali, presuppone un ulteriore canale autenticato una
tantum dal destinatario ai mittenti; la seconda costruzione, che utilizza
firme digitali parziali, consente di costruire una versione più debole del
canale autenticato e anonimo, cioè un canale che può essere interpretato
come selettivamente anonimo nei confronti dell’avversario che intercetta
e del destinatario; la terza costruzione, che utilizza le firme digitali ad
anello, consente di costruire un canale autenticato che non è anonimo solo
nei confronti dell’avversario, ma anche nei confronti del destinatario, cioè
l’identità dei mittenti non viene rivelata al destinatario.

Infine, consideriamo il difficile problema di costruire un canale sicuro
e anonimo a partire da canali solo autenticati, ma in modo cruciale non
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anonimi. Iniziamo riconsiderando le nozioni di sicurezza basate su giochi
per la ri-cifratura universale (URE) recentemente introdotte da Young
e Yung, e sottolineando che esse non catturano minimamente l’essenza
dell’URE, che noi identifichiamo come la non-associabilità. Mostriamo
infine come URE consenta in linea di principio di costruire un canale
sicuro e anonimo a partire da canali solo autenticati, ottenendo prima un
canale non-associabile.
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Chapter 1

Introduction

1.1 Motivation
Secure communication is often associated with the two fundamental cryp-
tographic properties of confidentiality and authenticity. Confidentiality
captures the guarantee that no information about the content of the com-
munication can leak to an eavesdropping adversary, whereas authenticity
captures the guarantee that no adversary capable of injecting messages in
the communication channel, can convince the receiver that such messages
are from the original sender. By encouraging open communication and
fostering trust, both these properties are indispensable for establishing a
secure digital infrastructure for communication.

However, in today’s highly digitized world, it is apparent that a third
crucial property must also be considered, when communicating online:
anonymity. In a complex digital system such as the internet, where
multiple senders and receivers communicate, a fundamental extension
of the meaning of privacy is the ability to conceal the identities of the
communicating parties.

1.1.1 Anonymity
In the cryptographic literature, the term privacy has been originally as-
sociated with confidentiality. Only later its meaning has been expanded
to incorporate other important security guarantees, such as anonymity.
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Considering for example public-key encryption (PKE), notions for confi-
dentiality have crystallized by the late eighties and early nineties. The
seminal work of Goldwasser and Micali [GM84] introduced the concept
of semantic security and showed its equivalence to indistinguishability
under chosen-plaintext attacks (IND-CPA). Privacy was therefore associ-
ated with the inability of an attacker to distinguish between ciphertexts
encrypting different messages under the same public key. A few years
later, this notion was further strengthened as indistinguishability under
chosen-ciphertext attacks (IND-CCA) by Naor and Yung [NY90] and
Rackoff and Simon [RS92], where the adversary was given the additional
power of having access to a decryption oracle.

On the other hand, almost a decade passed before a notion akin to
anonymity was introduced. While the term indistinguishability had long
been associated with the hardness of distinguishing encryptions of poten-
tially different messages under the same key, the new term key-privacy
introduced by Bellare et al. [BBDP01] extended its meaning to capture
the infeasibility of distinguishing between encryptions of messages under
different keys. Such notion has been formalized as indistinguishability
of keys (IK), under both chosen-plaintext and chosen-ciphertext attacks,
resulting in IK-CPA and IK-CCA security.

Anonymity Preservation. The property of key-indistinguishability
introduced in [BBDP01] for PKE has also been considered for the case
of symmetric encryption by Fischlin [Fis99], Desai [Des00], and Abadi
and Rogaway [AR02]. Furthermore, IK notions have been formulated for
various variants of signature schemes, including ring signatures, by Rivest
et al. [RST01], anonymous signatures, by Yang et al. [YWDW06], Fischlin
[Fis07], and Zhang and Imai [ZI09], and partial signatures by Bellare and
Duan [BD09] and Saraswat and Yun [SY09]. Moreover, Alwen et al.
[AHM+14] also introduced IK notions for the symmetric-key counterpart
of signatures, message authentication codes (MAC).

Still, as pointed out by Kohlweiss et al. [KMO+13], when employing
IK-secure schemes in the regular way, usually rather than “generating”
anonymity, they merely guarantee its preservation. More precisely, consid-
ering for example an IK-secure PKE scheme, it would be wrong to assume
that its use is sufficient to hide the identity of the receiver. Crucially, the
channel used to transmit the ciphertexts must already provide anonymity,
in order for this to be true. The importance of employing an IK-secure
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PKE scheme in this case, is to guarantee that any anonymity already
provided by such communication channel, is not destroyed by the use of
the scheme. Importantly, such considerations are harder to gain from
the classical game-based definitions of the various IK notions, and it is
therefore imperative to also understand them from an application point
of view, using for example a composable security framework.

Anonymity Creation. On the other hand, schemes that in principle do
produce anonymity, if used in the intended way, do exist. An example of
such a scheme is universal re-encryption (URE), introduced by Golle et
al. [GJJS04]. Even though its use is not as straightforward as the use of
a regular PKE scheme, through the careful design of a protocol based on
URE, it is possible to realize an unlinkable communication channel, which
lends itself naturally to provide anonymity, under the right conditions.

More precisely, a URE scheme allows anyone to re-encrypt a ciphertext
without the need for the public-key originally used to produce it, in such
a way that it will still decrypt to the underlying message when using the
original secret key. This enables the design of a so-called mix-network,
or mixnet for short, where senders post ciphertexts on a bulletin board,
mixers periodically re-encrypt the posted ciphertexts, and receivers fetch
the messages addressed to them by trial-decryption.

Rather than unlinkability, URE has been equipped with the game-
based notions of IND-CPA and IK-CPA in [GJJS04]. Several years later,
Young and Yung [YY18] pointed out some subtleties in the original
definitions, but they still did not phrase security of URE in terms of
unlinkability. Again, this emphasizes how understanding the creation of
anonymity from an application point of view is of fundamental impor-
tance, since it uncovers that the intended application of URE is indeed
unlinkability.

1.1.2 Constructive Cryptography

As we have outlined above, game-based definitions have significant short-
comings when it comes to understanding their application semantics.
Having been a recurrent issue in the cryptographic literature, this moti-
vated the creation of several composable security frameworks. Rather than
defining security by excluding certain attacks, such frameworks generally
aim at providing a security statement for a scheme in terms of its suit-



4 CHAPTER 1. INTRODUCTION

ability in realizing a certain application. Examples of composable security
frameworks are universal composability (UC) by Canetti [Can01], reactive
simulatability by Backes, Pfitzmann, and Waidner [PW01, BPW07], con-
structive cryptography (CC) by Maurer and Renner [MR11, Mau12], and
the inexhaustible interactive Turing machines (IITM) model by Küsters,
Tuengerthal, and Rausch [KTR13].

While these frameworks have distinct focuses and vary on a technical
level, they all share a common high-level approach for defining security,
known as the real-world ideal-world paradigm. For example in CC, the
framework used in this thesis, the security of a certain scheme is assessed
by comparing two different scenarios. In the first one, the real world, a
protocol making use of the scheme is given access to so-called assumed
resources, such as various communication channels and shared secret keys.
Such resources have interfaces for both honest and dishonest users, and
in the real world the protocol is connected to the honest ones. In the
second one, the ideal world, one considers a so-called ideal resource (such
as a communication channel with better guarantees than an assumed
one), whose goal is to capture the intended application of the scheme,
together with a simulator that is connected to the dishonest interfaces.
Assessing the scheme as secure can then be seen as the protocol safely
constructing the ideal resource from the assumed one. More concretely,
security is captured by asserting the indistinguishability of the two worlds,
which implies that any attack in the real world can be translated (by
the simulator) into an attack in the ideal world. Turned around, this
means that any attack excluded by definition by the ideal resource, cannot
happen in the real world, thus implying that the real world is not worse
(for the honest users) than the ideal world.

An essential consequence of this, is that whenever the ideal resource
is needed, it can be safely replaced by the protocol with the assumed
resources, independently of the context. This is naturally captured by the
composition theorem, a central element of CC and the similar frameworks.
A significant advantage of defining security in a composable manner,
is that it promotes modularity and abstraction, which are essential for
designing and analyzing complex systems, extending beyond cryptogra-
phy. By defining clear abstraction boundaries and abstracting away the
construction details, composition allows higher-level protocols to utilize
an idealized model of a lower-level protocol, sparing the designer from the
need to consider specific details of the latter.
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1.2 Overview and Contributions

The development of a library of construction statements is of paramount
importance within the framework of constructive cryptography. In this
thesis, we enrich such library by including new statements considering
resources that capture anonymity. We next summarize our main contri-
butions, and give pointers to the publications they are based on.

1.2.1 The Substitutions Framework

As part of the preliminaries in Chapter 2, we introduce a new framework
to define and relate security notions that enables an almost entirely
algebraic technique for proving cryptographic statements. We call it the
substitutions framework, and we will use it consistently throughout this
thesis to capture and relate both game-based notions as well as composable
ones, using an adaptation of constructive cryptography. As a toy example
to get familiar with the framework, in Chapter 2 we also give a very
simple proof of the fact that the authenticated encryption notion obtained
by combining indistinguishability under a chosen-plaintext attack with
integrity of ciphertexts is equivalent to the one obtained by combining
indistinguishability under a chosen-ciphertext attack with integrity of
plaintexts. This framework has evolved and has been refined throughout
the three publications on which the main three parts (Chapters 3 to 5) of
this thesis are based.

1.2.2 Secret-Key Anonymity Preservation

In the first part of the thesis, presented in Chapter 3, we consider the
problem of anonymity preservation in a setting where multiple senders
and one receiver use secret-key cryptography. Since the composable
analysis of this setting was already carried out in [AHM+15] for the case
of anonymous probabilistic message authentication codes (MAC) schemes,
we focus on the remaining open problem of studying the composable
semantics of anonymous probabilistic encryption (pE) and authenticated
encryption (pAE) schemes.

We begin by introducing game-based notions, capturing both confiden-
tiality and anonymity for pE and pAE, as substitutions. More precisely, for
pE we cast as a substitution the conventional real-or-random formulation of
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indistinguishability under a chosen-plaintext attack (IND-CPA), as well as
other notions from the literature of key-indistinguishability under a chosen-
plaintext attack (IK-CPA), whereas for pE we first cast as a substitution
the all-in-one formulation capturing confidentiality and unforgeability
at one, and introduce a new notion of IK under a chosen-ciphertext at-
tack (IK-CCA), also as a substitution. We also define combined notions,
capturing all notions at once for each primitive, and we then show the
relevant relations among them. Next, we show that for both pE and pAE,
their respective stronger confidentiality notions demanding pseudorandom
ciphertexts (IND$), indeed imply anonymity. Moreover, we show that the
Encrypt-then-MAC paradigm, not only preserves security, but anonymity
as well.

We then move to the composable treatment of anonymity preservation
for pE and pAE, by showing that in this setting, the introduced game-
based notions are sufficient to construct a secure and anonymous channel
from an authenticated and anonymous channel. Our analysis makes it
explicit that in this setting, key-indistinguishability must be understood
as a property that preserves anonymity, rather than creating it.

These results in that chapter are based on the publication [BM20].

1.2.3 Public-Key Anonymity Preservation

In the second part of the thesis, presented in Chapter 4, we consider the
problem of anonymity preservation in a setting where multiple senders
and one receiver use public-key cryptography. Since the composable
analysis of this setting was already carried out in [KMO+13] for the
case of anonymous public-key encryption (PKE) schemes, we focus on
the remaining open problem of studying the composable semantics of
anonymous variants of digital signature schemes.

In this scenario, intuitively we should construct an authenticated and
anonymous channel from an insecure and anonymous channel. We begin
by showing that this exact construction is impossible in the intuitive public-
key setting required by regular signatures, that is, if in addition to the
insecure and anonymous channel, only a one-time authenticated channel
from the senders to the receiver is assumed. We therefore provide three
alternative constructions which provide some sort of trade-off between
authenticity and anonymity (of the senders), by considering three variants
of digital signatures that capture some forms of anonymity.
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The first uses a new type of scheme that we introduce, bilateral
signatures (BS), which are closely related to designated verifier signatures
(DVS). We provide game-based notions for BS, cast as substitutions, and
then show that they are sufficient for the construction of an anonymous
authenticated channel from an insecure and anonymous channel, a one-
time authenticated channel from the senders to the receiver, and an
additional one-time authenticated channel from the receiver to the senders.

The second uses partial signatures (PS), introduced independently
by Saraswat and Yun [SY09] and Bellare and Duan [BD09]. We cast
game-based notions for PS to substitutions, also proposing new combined
notions, and then show that they are sufficient to construct, from an
insecure and anonymous channel and a one-time authenticated channel
from the senders to the receiver, a weaker version of the authenticated
and anonymous channel: a de-anonymizable authenticated channel, that
is, a channel that allows a sender to send a value anonymously (thus,
not authentically) to the receiver, but also allows the sender to later give
up anonymity and authenticate the value. On a technical level, in this
construction we encounter the challenging commitment problem, which
we are able to circumvent by using a recent extension of constructive
cryptography by Jost and Maurer [JM20].

Finally, the third uses ring signatures (RS), introduced by [RST01] and
refined by [BKM06]. We cast game-based notions for RS to substitutions,
also proposing new combined notions, and then show that they are
sufficient to construct, from an insecure and anonymous channel and
a one-time authenticated channel from the senders to all other senders
and the receiver, a stronger version of the authenticated and anonymous
channel: a receiver-side anonymous authenticated channel, that is, a
channel that allows a sender to send a value anonymously not only
towards the eavesdropper, but towards the receiver as well.

These results in that chapter are based on the publication [BM22].

1.2.4 Anonymity Creation

In the third part of the thesis, presented in Chapter 5, we consider the
challenging problem of constructing a secure and anonymous channel from
channels that are only authenticated, but crucially not already anonymous.
In practice, a common approach to this problem is the design of a mix
network, or mixnet for short. In the cryptographic literature, there are
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several schemes that can in princible be used to realize a mixnet. Here
we focus on universal re-encryption (URE), introduced by Golle et al.
[GJJS04].

We begin by casting as substitutions game-based notions of security
for URE recently introduced by Young and Yung [YY18], and pointing
out that they do not minimally capture the essence of URE, which we
identify as being unlinkability. We do so by introducing new notions,
combinations thereof, and showing both relations and separations among
them, using our substitutions framework.

We then study the composable semantics of URE by modeling a simple
mixnet with an honest mixer in constructive cryptography. We consider an
authenticated and not anonymous channel from a set of senders to a mixer,
as well as one from the mixer to a set of receivers, but in both directions.
We then show that a natural protocol modeling a mixer operating on a
bulletin board, constructs an unlinkable channel from the senders to the
receivers. This channel allows senders to input messages for receivers and
receivers to retrieve messages meant for them, but in such a way that the
adversary cannot link these actions together. We also discuss how under
the right circumstances, this channel provides anonymity.

Finally, we model the decisional Diffie-Hellman (DDH) problem also
as a substitution, and show how the original ElGamal-based scheme
from [GJJS04] satisfies our game-based notions, and therefore enables the
construction of the unlinkable channel.

The results in that chapter are based on the preprint [BMR23]. In
the same work, the final form of the substitution framework has been
introduced.

1.3 Related Work
The thesis studies the problem of defining anonymity within a composable
framework from thee different angles. We therefore provide the relevant
related work for each topic in the respective chapters. The bibliography
is found at the end of the thesis.



Chapter 2

Preliminaries

2.1 Notation

For a list of variables x1, x2, . . ., we write x1, x2, . . .← y to assign the same
value y to each variable and x1, x2, . . .← D to assign independently and
identically distributed values to each variable according to distribution
D, where we usually describe D as a probabilistic function. For a binary
operation ⋆, y ⋆← x means y ← y ⋆ x. A map M is initialized by M ← [ ]
and accessed by M [·]. ∅ denotes the empty set, N .

= {0, 1, 2, . . .} denotes
the set of natural numbers, and for n ∈ N, we use the convention [n]

.
=

{1, . . . , n}. For n ∈ N, {0, 1}n denotes the set of bitstrings of length
n, {0, 1}∗ .

=
⋃

i≥0{0, 1}i denotes the set of all finite length bitstrings,
for s ∈ {0, 1}∗, |s| denotes the length of s (in bits), and $n represent a
uniformly sampled random bitstring of length n. For tuples we sometimes
abuse notation in the following way: (x, (y, z)) = (x, y, z). For a random
variable X over a set X , we define suppX

.
= {x ∈ X |Pr[X = x] > 0}.

For a logical statement S, 1{S} is 1 if S is true, and 0 otherwise. We
treat sets as multisets.

2.2 Cryptographic Systems

In this thesis we follow [Mau02, MPR07] in making security statements
about cryptographic schemes using random systems (just systems for
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brevity). Such a system takes inputs X1, X2, . . . from some input set X
and generates, for each new input Xi, an output Yi from some output set
Y , which depends (possibly probabilistically) on the current input Xi and
on the internal state. A system is described exactly by the conditional
probability distributions of the i-th output Yi, given Xi

.
= (X1, . . . , Xi)

and Y i−1 .
= (Y1, . . . , Yi−1), for all i ≥ 1.

Definition 2.2.1 (System). An (X ,Y)-system S, for input set X and out-
put set Y , is a sequence of conditional probability distributions pSYi|Y i−1Xi ,
for i ≥ 1. Two systems are compatible if they have the same input
and output sets, and two compatible systems S and T are equivalent,
denoted S ≡ T, if they have the same input-output behavior, that is,
pSYi|Y i−1Xi = pTYi|Y i−1Xi for all i ≥ 1.

Throughout this thesis, we will describe systems informally or with
intuitive pseudocode, rather than by the conditional probabilities charac-
terizing them.

2.2.1 Basic System Relations
A useful relation on systems is their information theoretic distance, which
is denoted S ≈p T. In this thesis, we only use such distance for part of
an exemplification of our substitution framework, so we only define it
informally here; the statement essentially means that any distinguisher
has probability at most p in distinguishing between an interaction with
system S or system T. Another useful relation in this context, is that
of two systems behaving identically only until a certain (bad) event A is
provoked in S, denoted S|A ≡ T, but differently afterwards. Clearly, an
adversary successfully causing such an event, will be able to distinguish
between the two systems. A standard result in cryptography, states that
the opposite is also true: A successful distinguisher for the two systems,
can be transformed into a successful adversary provoking the event. Again,
since our framework of substitution mostly allows us to phrase notions as
distinguishing problems, rather than provoking conditions in games, we
only present this result from the literature in a form tailored to our needs.

Lemma 2.2.2 ([Sho01, Mau02, BR06, MPR07]). For any compatible
systems S and T, and event A defined in at least one of S or T,

S|A ≡ T =⇒ S ≈Pr[¬A] T.
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This result had been shown specifically for systems in [Mau02, MPR07].
It was proven even more generally in [Sho01], and is usually referred to
as the fundamental lemma of game-playing from [BR06], where it was
shown for code-based games.

2.2.2 System (Black-Box) Transformations

Systems can be transformed into other systems by means of black-box
transformations, which in this thesis we abstract away as functions from
systems to systems. For example, given some system S and a transforma-
tion ρ, we denote by ρ(S) the resulting new system. Concretely, since we
consider them to always be black-box, transformations are implemented
by systems themselves, that is, ρ is associated with a system Cρ which is
connected in such a way to system S that allows it to modify the latter’s
behavior by processing its inputs and outputs. More precisely, Cρ obtains
the input given to ρ(S), can then interact for a bounded number of times
with S, and finally returns the output of ρ(S). We give more examples
and details of transformations in the next subsection.

2.2.3 Basic System Operations

We next define two fundamental operations on systems. First, given
some systems S1, . . . ,Sℓ, for some ℓ ∈ N, we define [S1, . . . ,Sℓ] as a
(
⋃ℓ

i=1({i} × Xi),
⋃ℓ

i=1 Yi)-system that on input (i, x), inputs x to Si,
obtains y, and then outputs y. We call this operation parallel composition,
and rather than saying “input (i, x) to [S1, . . . ,Sℓ]”, we say “input x to
sub-system Si”. If two or more of the systems S1, . . . ,Sℓ depend on
some shared parameter, or if they share state, then we use the notation
JS1, . . . ,SℓK to denote their correlated parallel composition, and make any
common parameter explicit. An intuitive description of such composition
is depicted in Figure 2.1.

For the case of a shared parameter, consider for example a system Sp,
whose behavior depends on some parameter p, from some (finite) space P .
Let now a, b be values sampled independently over P, possibly according
to some specified distribution. We can think of a and b as (independent)
random variables over P. Then, we might for example consider the
composed system [Sa,Sb], where the two systems are independent, but also
the composed system JSa,SaK, where now the two systems are correlated.
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System Composition Intuitive description

[S,T]
(1, x1)

(2, x2)

y1

y2

S

T

x1

x2

y1

y2

JSp,TpK
(1, x1)

(2, x2)

y1

y2

Sp

p

Tp

x1

x2

y1

y2

JX,YK
(1, x1)

(2, x2)

y1

y2

S

ρ

x1 y1

x2 y2

Figure 2.1: Schematic representation of parallel composition of two sys-
tems, independent and correlated through a shared parameter or state.

In the context of anonymity, this is useful for modeling pairs of oracles
which might be implementing for example encryption either under the
same key, or under two independent key.

For the case of shared state, consider for example a system S and a
transformation ρ as per Section 2.2.2. The resulting system ρ(S) might
be compatible with S, but more in general ρ might transform S into a
system that is compatible with two or more arbitrary systems composed
in parallel, which share some state kept by ρ. Considering the simple case
of two, we indicate this by writing ρ(S) ≡ JX,YK, where X and Y are
names given to the two correlated systems composed in parallel that ρ
emulates. Note that S might be itself a system composed in parallel.

2.3 The Substitutions Framework

Most security proofs are based on the idea of transforming an adversary
for a problem into another adversary for a different problem via a reduc-
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tion. Usually security notions and hardness assumptions are phrased as
distinguishing problems, so in this case an adversary is called a distin-
guisher. Here we take a more abstract view, and rather than relating
notions and hardness assumptions by transforming distinguishers, we
transform the distinguishing problems themselves, modeled as Maurer’s
random systems [Mau02]. To do so, we introduce the notion of substitu-
tion for two such systems, an abstraction of indistinguishability that does
not require to reason about distinguishers. Our security statements can
then be compactly described as substitutions, and relating notions boils
down to algebraically showing connections between substitutions, which
potentially enables automated verifiability.

We formulate all of the above mentioned security definitions in a
systematic and concise language. We see the framework we put forth as
an independent contribution of this thesis, since it allows for compact
formulations of security definitions, and enables easy and short (reduction-
based) proofs of security, which in principle could be formally verified in
a rather direct way (we leave this task open). Our proposed framework is
based on the earlier work on cryptographic systems of Maurer, Pietrzak,
and Renner [Mau02, MPR07] and can be seen as a specialization of
the recent work of Brzuska, Delignat-Lavaud, Fournet, Kohbrok, and
Kohlweiss [BDF+18], where security notions are defined as packages
representing collections of oracles. Their motivation is similar to ours,
as they also claim that their method facilitates computer-aided proofs
by allowing to delegate perfect reductions steps to proof assistants. It is
inspired by the approach taken by Rosulek in [Ros21], as well as by the
earlier work of Abadi and Rogaway [AR02].

Definition 2.3.1 (Substitution). For two compatible systems S and T,
we denote by S ‌ T that S substitutes T, where ‌ is a relation on systems
satisfying the following three properties, for a third compatible system U
and a transformation ρ:

Symmetry: S ‌ T ⇐⇒ T ‌ S.

Transitivity: S ‌ T ∧T ‌ U =⇒ S ‌ U.

Preservation: S ‌ T =⇒ ρ(S) ‌ ρ(T).

The notion of a substitution is exclusively used to make conditional
statements, that is, statements of the form “if we can substitute S by T
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(S ‌ T), then we can also substitute system S′ by system T′ (S′ ‌ T′)”,
which we denote (and formalize below) as S ‌ T =⇒ S′ ‌ T′. In order
to show such an implication, we usually find systems S′′ and T′′ such that
S′ ≡ S′′ and S′ ≡ T′′ (that is, S′′ and T′′ are more convenient descriptions
of a system with the same behavior as S′ and T′, respectively), as well
as transformation ρ such that ρ(S) = S′′ and ρ(T) = T′′. Now, since
{S′,T′} ≡ {S′′,T′′} = {ρ(S), ρ(T)} means S′ ‌ T′ ⇐⇒ ρ(S) ‌ ρ(T),
and since S ‌ T =⇒ ρ(S) ‌ ρ(T) (we can substitute S and T in any
context, see discussion at the end of this section for more details), we
proved the original implication.

2.3.1 Modeling Security Notions as Substitutions

We can now describe how to use substitutions in order to capture security
statements. Consider some cryptographic scheme Π. A security notion XΠ

for Π is defined by a substitution X0 ‌ X1, for two systems X0 and X1

depending (implicitly) on Π. The expression “XΠ holds unconditionally”,
means that X0 ≡ X1, and “XΠ holds unconditionally except with probabil-
ity p”, means that the behaviors of X0 and X1 differs with probability
p, denoted X0 ≈p X1. If the scheme Π is clear from the context, we just
write X rather than XΠ.

Let us now explain how we can relate security notions defined as
substitutions. Let x1, . . . , xℓ, y be some security notions (possibly relative
to different schemes), for some ℓ ∈ N, defined as substitutions xi :⇐⇒
Xi,0 ‌ Xi,1, for i ∈ [ℓ], and y :⇐⇒ Y0 ‌ Y1. We say that x1, . . . , xℓ
imply y, denoted

(x1, . . . , xℓ)
t1,...,tℓ−−−−−→ y,

if there exist n ∈ N, ρ1, . . . , ρn, i1, . . . , in ∈ [ℓ], and b1, . . . , bn ∈ {0, 1},
such that

• Y0 ≡ ρ1(Xi1,b1),

• ρj(Xij ,1−bj ) ≡ ρj+1(Xij+1,bj+1
), for any j ∈ [n− 1], and

• Y1 ≡ ρn(Xin,1−bn),

and where tj
.
= |{k | ik = j, k ∈ [n]}|, for any j ∈ [n], represents the

number of times each substitution xj is used. Concretely, we explicitly
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show the implication by the following sequence of steps:

Y0 ≡ ρ1(Xi1,b1)

‌ ρ1(Xi1,1−b1) (xi1)
≡ ρ2(Xi2,b2)

‌ ρ2(Xi2,1−b2) (xi2)
≡ · · ·
≡ ρn(Xin,bn)

‌ ρn(Xin,1−bn) (xin)
≡ Y1.

For a more informal statement making the values t1, . . . , tn implicit, we
use the alternative notation (x1, . . . , xℓ) =⇒ y, and by (x1, . . . , xℓ) ⇐⇒ y,
we mean that, additionally, y =⇒ xi, for each i ∈ [ℓ]. Moreover, in case
some of the steps can be justifies by ρi(Xi,bi) ≈pi

ρi(Xi,1−bi) (for some
probability pi), rather than a substitution Xi,0 ‌ Xi,1, we then collect
the sum of such pi’s into a value ε, and write (x1, . . . , xℓ)

t1,...,tℓ; ε−−−−−−−→ y
instead.

Finally, let us explain how we can separate security notions defined as
substitutions. Let x and y be some security notions defined as substitutions
x :⇐⇒ X0 ‌ X1 and y :⇐⇒ Y0 ‌ Y1. We say that y is strictly stronger
than x, denoted

x −̸→ y,

if there exists a concrete scheme Π′ such that XΠ′

0 ‌ XΠ′

1 , but YΠ′

0 ̸‌
YΠ′

1 , where by ̸‌ we mean that the systems YΠ′

0 and YΠ′

1 are trivially
distinguishable, and thus not substitutable (for example, YΠ′

0 outputs 1 if
a certain value is input, and 0 otherwise, whereas YΠ′

1 always outputs a
random bit, for a large enough set of possible value). Nevertheless, this
is instead always shown by constructing the scheme Π′ from a generic
scheme Π, and then proving that XΠ =⇒ XΠ′

, but YΠ′

0 ̸‌ YΠ′

1 . We use
the natural shorthand notation x ↚→ y to mean x −̸→ y and y −̸→ x.

2.3.2 Abstracting the Hybrid Argument
Another standard result from the cryptographic literature, appearing in
many different ways, is the hybrid argument. Within our framework of



16 CHAPTER 2. PRELIMINARIES

substitutions, we can capture the essence of what the hybrid argument
really is: A way to show that the two extremes of a sequence of systems (the
hybrids) can be substituted, if they can all be pairwise substituted. This is
essentially the same as the generic way to relate security notions we showed
in Section 2.3.1. In fact, the difference seems to be that cryptographers
usually refer to the hybrid argument only when the same substitution is
used multiple times. Still, for convenience, we next formalize the hybrid
argument in what we believe to be its most abstract form as substitutions.

Lemma 2.3.2. For any n ∈ N, consider independent systems S1, . . . ,Sn,
T1, . . . ,Tn and transformations ρ1, . . . , ρn. If Si ‌ Ti, for any i ∈ [n],
and ρi(Ti) ≡ ρi+1(Si+1), for any i ∈ [n− 1], then ρ1(S1) ‌ ρn(Tn).

Proof. ρ1(S1) ‌ ρ1(T1) ≡ ρ2(S2) ‌ ρ2(T2) ≡· · ·≡ ρn(Sn) ‌ ρn(Tn).

Note that often in the literature only the less generic version of
Lemma 2.3.2 with S1 = · · · = Sn and T1 = · · · = Tn is referred to
as hybrid argument.

2.3.3 Relating Substitutions to Concrete Security
For two systems S and T, we mentioned above that if S ‌ T is a valid
substitution, then so is ρ(S) ‌ ρ(T). To see this, assume for example
that we instantiate systems as some kind of poly-time programs, in some
security parameter κ ∈ N, and define Sκ ‌ Tκ to mean

∆Dκ(Sκ,Tκ)
.
= |Pr[Dκ(Sκ) = 0]− Pr[Dκ(Tκ) = 0]| ≤ ε(Dκ),

for all poly-time (distinguishing) programs Dκ and some function ε negli-
gible in κ. Now, we might want to show that if this is the case, then

∆Dκ(S′κ,T
′
κ) ≤ ε′(Dκ),

for all Dκ and some other negligible function ε′. In this case, the way to
show this is to simply observe that, since composing Dκ with (black-box)
transformation ρ, denoted Dκρ, still results in a poly-time program in κ,
then

∆Dκ(S′κ,T
′
κ) = ∆Dκ(S′′κ,T

′′
κ) = ∆Dκ(ρ(Sκ), ρ(Tκ)) = ∆Dκρ(Sκ,Tκ).

Therefore, with ε′(Dκ)
.
= ε(Dκρ) being still negligible in κ, we proved

the implication.
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2.3.4 An Example: Authenticated Encryption

In this section we exemplify the substitution framework by giving a
very simple proof of the fact that authenticated encryption (AE) can be
equivalently formulated as ciphertext-indistinguishability under a chosen-
plaintext attack plus ciphertext-integrity (ind-cpa ∧ int-ctxt, as defined for
example in [BN00]) and ciphertext-indistinguishability under a chosen-
ciphertext attack plus plaintext-integrity (ind-cca ∧ int-ptxt, as defined
for example in [KL20]). We do so by showing that both combinations
are equivalent to an all-in-one formulation of AE, denoted1 ae, which in
turn implies all four notions. In [BN00], where the notions of int-ptxt
and int-ctxt were originally introduced, it was shown that ind-cpa ∧ int-
ctxt implies ind-cca, but that ind-cca ∧ int-ptxt implies int-ctxt was only
shown much later in [JBB18]. Provided these two implications, the result
trivially follows since ind-cca implies ind-cpa and int-ctxt implies int-ptxt.
Whereas the proof given in [JBB18] is code-based, generalized to stateful
encryption, and rather involved, ours takes advantage of substitutions,
and is therefore much simpler, concise, and intuitive.

In order to show all implications, we first need to rephrase the two
notions of plaintext-integrity and ciphertext-integrity as substitutions. In
[BN00], they are defined as games where an adversary is given access to
encryption and decryption oracles, and wins if upon a decryption query,
a certain condition is met; for plaintext-integrity, the queried ciphertext
needs to be valid (that is, not decrypt to the special symbol ⊥) and
decrypt to a plaintext that was not previously queried to the encryption
oracle, whereas for ciphertext-integrity, the queried ciphertext needs to
be valid and not have been previously output by the encryption oracle.

Any such game can in principle be turned into a distinguishing problem
(hence, a substitution) between a real system and an ideal one where the
winning condition of the original game is used to make the latter systems
behave identically unless the condition itself is provoked (for example,
this approach is extensively used in [Ros21]). Because of this, it is easy
to see that (1) if the condition is provoked in the game, then the systems
are trivially distinguishable, and (2) if the two systems behave identically
unless the condition is provoked, then distinguishing them reduces to
provoking the condition in the corresponding game, as per Lemma 2.2.2.

1 This notion has been introduced in [Shr04] under the name of IND-CCA3, but our
notion is closer to a re-formulation of IND-CCA3 from [AGM18].
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We now define symmetric-key encryption, and the systems needed to
capture the above security notion. Note that we will reuse these later in
Chapter 3.

Definition 2.3.3. A Symmetric-Key Encryption Scheme for key space
K, supported message lengths L ⊆ N, message space M =

⋃
ℓ∈L{0, 1}ℓ,

expansion factor τ ∈ N, and ciphertext space C =
⋃

ℓ∈L{0, 1}ℓ+τ , is a
triple Π = (Gen, Enc, Dec) where:

• Gen is an (efficiently samplable) distribution over K;

• Enc : K×M→ C is a (efficiently computable) probabilistic function;

• Dec : K×C →M∪{⊥} is an (efficiently computable) deterministic
function.

For k ∈ K, we write Enck(·) for Enc(k, ·) and Deck(·) for Dec(k, ·).

In the following, all notions are relative to some fixed symmetric-key
scheme Π = (Gen, Enc, Dec), for which we define the following systems,
parameterized by some key k ∈ K:

• Ek: On input m ∈M, get c← Enck(m) and output c.

• Dk: On input c ∈ C, get m := Deck(c) and output m.

A natural combination of the above systems, is the correlated parallel
compositon JEk,DkK, that provides access to both encryption and decryp-
tion oracles. Moreover, we also define the following transformations, for
some arbitrary systems X and Y:

• ρcpa(X): On input m, for m ∈M, get m̃ $← {0, 1}|m|, forward m̃ to
X, obtain c ∈ C, and output c.

• ρcca(JX,YK) ≡ JX′,Y′K, for some correlated systems X′ and Y′

that behave as follows: Initially set Q ⊆M× C to ∅, and then:

– On input m ∈ M to X′, get m̃ $← {0, 1}|m|, forward m̃ to X,
obtain c ∈ C, set Q to Q∪ {(m, c)}, and output c.

– On input c ∈ C to Y′, if there exists2 an m ∈ M such that
(m, c) ∈ Q, then output m, otherwise forward c to Y, obtain
m′ ∈M∪ {⊥}, and output m′.

2 Here and in all subsequent similar transformations, if multiple such values exist
we always tacitly assume that the first corresponding element inserted in Q is taken.
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• ρptxt(JX,YK) ≡ JX′,Y′K, for some correlated systems X′ and Y′

that behave as follows: Initially set Q ⊆M to ∅, and then:

– On input m ∈ M to X′, set Q to Q ∪ {m}, forward m to X,
obtain c ∈ C, and output c.

– On input c ∈ C to Y′, forward c to Y, obtain m ∈ M∪ {⊥},
and if m ∈ Q then output m, otherwise output ⊥.

• ρctxt(X) ≡ JX′,Y′K, for some correlated systems X′ and Y′ that
behave as follows: Initially set Q ⊆M× C to ∅, and then:

– On input m ∈M to X′, forward m to X, obtain c ∈ C, set Q
to Q∪ {(m, c)}, and output c.

– On input c ∈ C to Y′, if there exists an m ∈ M such that
(m, c) ∈ Q, then output m, otherwise output ⊥.

• ρae(X)
.
= ρctxt ◦ ρcpa(X) ≡ JX′,Y′K, for some correlated systems X′

and Y′ that behave as follows: Initially set Q ⊆M× C to ∅, and
then:

– On input m ∈ M to X′, get m̃ $← {0, 1}|m|, forward m̃ to X,
obtain c ∈ C, set Q to Q∪ {(m, c)}, and output c.

– On input c ∈ C to Y′, if there exists an m ∈ M such that
(m, c) ∈ Q, then output m, otherwise output ⊥.

In certain contexts, one might with to give explicit names to two oracles
emulated by a transformation, and in this case we suggest the following
notations:

• E$
k

.
= ρcpa(Ek);

• JEk, D̂kK
.
= ρcca(JEk,DkK);

• JEk,D
⊥
k K .

= ρptxt(JEk,DkK);

• JEk,D
⊥K .

= ρctxt(Ek);

• JE$
k,D

⊥K .
= ρae(Ek).
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We can now define security notions for AE as substitutions.
Following [BDJR97], we first define the game-based security notion

of confidentiality under a chosen-plaintext attack in the real-or-random
fashion, where the adversary must distinguish between a true encryption
oracle and one which ignores inputs and encrypts random messages of the
same length instead. The following definition is essentially the abstraction
of the one named ROR-CPA in [BDJR97], which is linearly equivalent (in
the number of queries) to the one dubbed FTG-CPA (for “find-then-guess”)
therein, which is usually what IND-CPA refers to in the literature.

Definition 2.3.4 (ind-cpa). Ek ‌ ρcpa(Ek), for k ← Gen.

Again following [BDJR97], we then define the game-based security
notion of confidentiality under a chosen-ciphertext attack also in the
real-or-random fashion, where the adversary must distinguish between
a pair of (true) encryption and decryption oracles and a pair of (fake)
oracles where the first ignores inputs and encrypts random messages of
the same length instead, and the second only decrypts ciphertexts not
previously output by the first. More precisely, the fake decryption oracle
returns the originally input message, in case a previously output ciphertext
is queried. We therefore deviate slightly from [BDJR97], where it was
instead mandated that the adversary does not query such a ciphertext in
the first place.

Definition 2.3.5 (ind-cca). JEk,DkK ‌ ρcca(JEk,DkK), for k ← Gen.

Recall our discussion above on how a notion phrased as a game with
a winning condition can be phrased as a distinguishing problem. With
that in mind, consider the conventional notion of plaintext integrity from
[BN00], where an adversary has access to two oracles: one for encryption,
that remembers the queried messages, and one for verification, that only
returns a bit indicating whether the input ciphertext decrypts to a valid
message or not, and sets the winning flag to true in case such message is
indeed valid and was not previously queried to the encryption oracle. First
of all, following [MRT12], we use a stronger notion where the verification
oracle returns the decrypted message or the special symbol ⊥ instead
of just a bit, since the original notion cannot guarantee composability.
We therefore, refer to the decryption oracle, rather than the verification
oracle. Moreover, we do not hard-code a condition to be won inside
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the decryption oracle, but rather model the notion as the problem of
distinguishing between two pairs of oracles: The first models regular
encryption and decryption, whereas the second pair is composed of an
oracle for encryption that stores the queried messages and an oracle for
(fake) decryption, that only returns the decryption of the input massage
if it corresponds to one of those queried to the encryption oracle.

Definition 2.3.6 (int-ptxt). JEk,DkK ‌ ρptxt(JEk,DkK), for k ← Gen.

The stronger notion of ciphertext integrity is similar to the previous
notion of plaintext integrity, except that now the fake decryption oracle
will not first decrypt the input ciphertext and then check whether the
resulting message is new or not, but rather only output a message, if such
message was the query to the encryption oracle that produced the queried
ciphertext. For this, the encryption oracle will now not only keep track
of the queried messages, but rather of the resulting message-ciphertext
pairs.

Definition 2.3.7 (int-ctxt). JEk,DkK ‌ ρctxt(Ek), for k ← Gen.

For the all-in-one security notion ae capturing both confidentiality
and authenticity, we follow the one originally introduced by Shrimpton
in [Shr04] and dubbed IND-CCA3 therein. There, an adversary must
again distinguish between a pair of (true) encryption and decryption
oracles and a pair of (fake) oracles where the first ignores inputs and
encrypts random messages of the same length instead, and the second
always return ⊥, except if the provided ciphertext was previously output
upon (fake) encryption, in which case the original message is returned.
Note that we are again deviating slightly from the original IND-CCA3
notion, since we don’t put any restriction on the adversary. This variant
of the notion was first put forth in [AGM18] and shown to be equivalent
to IND-CCA3, and it was for example of fundamental importance in the
formulation of composable notions for quantum authenticated encryption
in CC [BMPZ19], where the so-called no-cloning theorem directly con-
tradicts the IND-CCA3 definition. Moreover, note that given how we
modeled IND-CPA and INT-CTXT, it is exactly the composition of those
two notions by definition.

Definition 2.3.8 (ae). JEk,DkK ‌ ρae(Ek), for k ← Gen.
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In order to prove the main result, we need to additionally define the
following transformations (for arbitrary systems X and Y), systems, and
a lemma.

• ρenc(JX,YK): On input m ∈M, forward m to X, obtain c ∈ C, and
output c. Note that this means ρenc(JX,YK) ≡ X.

• ρcca-wor(JX,YK) ≡ JX′,Y′K, for some correlated systems X′ and Y′

that behave as follows: Initially set Q ⊆M× C and Q′ ⊆M to ∅,
and then:

– On input m ∈M to X′, setQ′ toQ′∪{m}, get m̃ $← {0, 1}|m|∖
Q′, forward m̃ to X, obtain c ∈ C, set Q to Q∪ {(m, c)}, and
output c.

– On input c ∈ C to Y′, if there exists an m ∈ M such that
(m, c) ∈ Q, then output m, otherwise forward c to Y, obtain
m′ ∈M∪ {⊥}, and output m′.

• Mwr: On input m ∈M, get m̃ $← {0, 1}|m|, and output m̃.

• Mwor: Initially set Q ⊆M to ∅, and then on input m ∈M, set Q
to Q∪ {m}, get m̃ $← {0, 1}|m| ∖Q, and output m̃.

Lemma 2.3.9. Let q be the maximum number of queries and ℓmin
.
= minL.

Then:
Mwr ≈q2/2ℓmin Mwor.

Proof. Towards the worst-case analysis, assume all messages m1, . . . ,mq

queried to Mwr have length ℓmin. Let m̃1, . . . , m̃q be the messages sampled
by Mwr. Let A be the event that in Mwr, for any i ∈ [q] and any j ∈ [i],
m̃i ̸= mj . Then clearly Mwr|A ≡Mwor. Therefore, by Lemma 2.2.2,

Mwr ≈Pr[¬A] M
wor,

where

Pr[¬A] = Pr[∃i ∈ [q] : ∃j ∈ [i] : m̃i = mj ]

≤
q∑

i=1

i∑
j=1

1

2ℓmin

≤ q2

2ℓmin
.
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ind-cpa ind-cca

∧ ae ∧

int-ctxt int-ptxt

Figure 2.2: Relations among notions: the six black arrows represent the
implications we concretely show in Theorem 2.3.10, the two gray ones
follow from them.

We can now state and prove the main result.

Theorem 2.3.10. (ind-cpa, int-ctxt) ⇐⇒ (ind-cca, int-ptxt) ⇐⇒ ae.

Proof. Let k ← Gen. To show the two equivalences, it is sufficient to
prove the following six implications (see Figure 2.2).

1. ind-cca 1−→ ind-cpa:

Ek ≡ ρenc(JEk,DkK) (2.1)
‌ ρenc ◦ ρcca(JEk,DkK) (ind-cca)
≡ ρcpa(Ek), (2.2)

where equations (2.1) and (2.2) hold because ρenc only accepts and
forwards queries over M.

2. int-ctxt 2−→ int-ptxt:

JEk,DkK ‌ ρctxt(Ek) (int-ctxt)
≡ ρptxt ◦ ρctxt(Ek) (2.3)
‌ ρptxt(JEk,DkK), (int-ctxt)

where equation (2.3) holds because in the composed transformation
ρptxt ◦ ρctxt, where ρptxt keeps the set Q and ρctxt keeps the set Q′, if
there exists an m ∈M such that (m, c) ∈ Q′, then m ∈ Q.
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3. (ind-cpa, int-ctxt)
1,1−−−→ ae:

JEk,DkK ‌ ρctxt(Ek) (int-ctxt)
‌ ρctxt ◦ ρcpa(Ek) (ind-cpa)
= ρae(Ek). (Def.)

4. (ind-cca, int-ptxt)
1,2; q2e /2

ℓmin

−−−−−−−−→ ae: Consider ρ(X) ≡ JX′,Y′K, for
some correlated systems X′ and Y′, that behave as follows: Initially
get k′ ← Gen, set Q,Q′′ ⊆M and Q′ ⊆M× C to ∅, and then:

• On input m ∈ M to X′, set Q to Q ∪ {m}, forward m to X,
obtain m̃, set Q′′ to Q′′ ∪ {m̃}, get c ← Enck′(m), set Q′ to
Q′ ∪ {(m̃, c)}, and output c.

• On input c ∈ C to Y′:
– If there exists an m ∈M such that (m, c) ∈ Q′: If m ∈ Q,

output m, otherwise output ⊥.
– Otherwise, get m′ := Dec′ki

(c) ∈M∪ {⊥}, and if m′ ∈ Q,
output m, otherwise output ⊥.

Then:

JEk,DkK ‌ ρptxt(JEk,DkK) (int-ptxt)
‌ ρptxt ◦ ρcca(JEk,DkK) (ind-cca)
‌ ρptxt ◦ ρcca ◦ ρptxt(JEk,DkK) (int-ptxt)
≡ ρ(Mwr)

≈q2e /2
ℓmin ρ(Mwor) (Lemma 2.3.9)

≡ ρptxt ◦ ρcca-wor ◦ ρptxt(JEk,DkK)
≡ ρae(Ek), (2.4)

where the only non-trivial step is equation (2.4), which we now justify.
Let define systems S .

= ρptxt ◦ ρcca-wor ◦ ρptxt(JEk,DkK). Without loss
of generality, assume that a message m ∈ M has been input to S
(respectively ρae(Ek)), and internally S (respectively ρae(Ek)) has
sampled m̃ ∈ M with |m̃| = |m| (and m̃ ̸= m, for S), computed
c← Enck(m̃), and then output c. We can distinguish four cases for
a further input c′ ∈ C to S (respectively ρae(Ek)):
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(i) c′ = c;

(ii) c′ ̸= c, Deck(c′) = m;

(iii) c′ ̸= c, Deck(c′) = m̃;

(iv) c′ ̸= c, Deck(c′) ̸= m, Deck(c′) ̸= m̃.

Since m̃ ̸= m in S, these four cases are disjoint and cover all possible
outcomes. We now show that only for case (i) the output of both S
and ρae(Ek) will be m, whereas for all other cases, both systems will
consistently output ⊥. For S, consider the set Q ⊆M kept by the
leftmost ρptxt, the set Q′ ⊆M×C kept by ρcca, and the set Q′′ ⊆M
kept by the rightmost ρptxt. Then Q = {m}, Q′ = {(m, c)}, and
Q′′ = {m̃}. Therefore:

(i) If c′ = c, then (m, c′) ∈ Q′, and since m ∈ Q, S outputs m;

(ii) If c′ ̸= c and Deck(c′) = m, then since there is no m ∈ M
such that (m, c′) ∈ Q′, S computes m← Deck(c′). But since
m /∈ Q′′ (and ⊥ /∈ Q), S outputs ⊥;

(iii) If c′ ̸= c and Deck(c′) = m̃, then since there is no m ∈M such
that (m, c′) ∈ Q′, S computes m̃← Deck(c′), so m̃ ∈ Q′′. But
since m̃ /∈ Q, S outputs ⊥;

(iv) If c′ ̸= c, Deck(c′) ̸= m, and Deck(c′) ̸= m̃, then since there is
no m ∈M such that (m, c′) ∈ Q′, S computes m′ ← Deck(c′).
But since m′ /∈ Q′′ (and ⊥ /∈ Q), S outputs ⊥.

For ρae(Ek), consider the set Q kept by ρae. Then Q = {(m, c)}.
Therefore, if c′ = c, then (m, c′) ∈ Q, thus ρae(Ek) outputs m.
Moreover, cases (ii)–(iv) collapse to the same case: since c′ ̸= c,
there is no m ∈ M such that (m, c′) ∈ Q, thus ρae(Ek) always
outputs ⊥.

5. ae 2−→ ind-cca:

JEk,DkK ‌ ρae(Ek) (ae)
≡ ρcca ◦ ρae(Ek) (2.5)
‌ ρcca(JEk,DkK), (ae)
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where equation (2.5) holds because in the composed transformation
ρcca ◦ ρae, where ρcca keeps the set Q and ρae keeps the set Q′, there
exists an m ∈M such that (m, c) ∈ Q if and only if there exists an
m̃ ∈M such that (m̃, c) ∈ Q′.

6. ae 3−→ int-ctxt:

JEk,DkK ‌ ρae(Ek) (ae)
= ρctxt ◦ ρcpa(Ek) (Def.)
≡ ρctxt ◦ ρcca(JEk,DkK) (2.6)
‌ ρctxt(JEk,DkK), (ind-cca)

where equation (2.6) holds because ρctxt never forwards queries over
C, and for the last step, since we just proved that ae 2−→ ind-cca, we
used ind-cca (hence ae twice).

Remark. Sometimes indistinguishability is phrased in the stronger sense
of indistinguishability from random bitstrings (cf. Definition 3.2.15). It
is possible to show Theorem 2.3.10 where all notions of confidentiality
are strengthened in this way, which would result in even shorter proofs.
In particular, the proof of (ind-cca, int-ptxt) =⇒ ae would require (a
weakened version of) the int-ptxt substitution to be invoked only once,
and it would not incur any additional term q2e /2

ℓmin [Bel22].

2.4 Constructive Cryptography

We now turn our attention to composable security, as opposed to game-
based security. For this, we make use of the constructive cryptography
(CC) framework by Maurer [Mau12], which is a specialization of the
abstract cryptography theory by Maurer and Renner [MR11]. In essence,
CC allows to define security of cryptographic protocols as statements
about constructions of resources from other resources, which we model as
cryptographic systems from Section 2.2, enhanced with interfaces. For
such systems, we use suggestive words typed in sans-serif rather than
bold-faced letters.
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Definition 2.4.1 (P-Resource). For a party set P , a P-resource RES for
(implicit) input-output set X , is a (P × X ,P × X )-system. For P ∈ P
and x ∈ X , to “input x at interface P of RES” means inputting (P, x) to
RES, and to “obtain x from interface P of RES”, means getting an output
(P, x) from RES.

The various interfaces of a resource should be thought of as being
assigned to parties. In both Chapters 3 and 4, we focus on a more specific
set of resources which are parameterized only by an integer n ≥ 2 (the case
n = 1 would be pointless for anonymity), defining n+ 2 interfaces: n for
the senders, denoted S1, . . . , Sn, one for the adversary, denoted E, and one
for the receiver, denoted R. Therefore, in those two chapters we use the
expression n-resource to indicate P-resources with P = {S1, . . . , Sn, R,E}.

Another crucial ingredient of CC are converters, also formally modeled
as systems (labeled by lower-case sans-serif suggestive words), which
when applied to individual interfaces of P-resources, give raise to a new
P-resource.

Definition 2.4.2 (Local Converter). A local converter cnv is a system
with in and out interfaces (as per Definition 2.4.1), which can be applied
to an interface P ∈ P of a P-resource RES, denoted cnvP RES, which is
in turn a P-resource. cnvP RES behaves as RES, except that:

• Inputs to interface P are first input to interface out of cnv, which
then produces an output at its interface in, which is in turn input
to interface P of RES.

• Outputs at interface P of RES are first input to interface in of cnv,
which then produces an output at its interface out, which is in turn
output at interface P of cnvP RES.

For another local converter ĉnv, (ĉnv cnv)P RES is the resource resulting
from connecting interface in of ĉnv to interface out of cnv and interface in
of cnv to interface P of RES.

In order to make security statements within CC, we model protocols
as lists of converters attached to the honest interfaces of a resource,
defined by a set H ⊆ P. More precisely, an H-protocol π is a list of
h

.
= |H| converters π

.
= (cnv1, . . . , cnvh), where without loss of generality,

H = {P1, . . . , Ph}, and cnvi is attached to honest party interface Pi, for
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i ∈ [h]. For the special case of n-resources, we call π an n-protocol.
Assuming all senders and receivers to be honest, we use the convention
that with π

.
= (cnv1, . . . , cnvn+1), cnvi is attached to Si, for i ∈ [n], and

cnvn+1 is attached to R.
Throughout this thesis, we will use the short-hand notation π RES for

the P-resource cnvP1
1 · · · cnv

Ph

h RES. Moreover, for a second H-protocol
π̂

.
= (ĉnv1, . . . , ĉnvh), we define the composition of π̂ and π as π̂π

.
=

(ĉnv1 cnv1, . . . , ĉnvh cnvh), and therefore π̂π RES is the P-resource

(ĉnv1 cnv1)
P1 · · · (ĉnvh cnvh)Ph RES.

The last ingredient we need is that of a simulator σ, which is modeled
as a converter to be attached to the adversarial interface E, simply
denoted σ RES (rather than the more pedantic σE RES, since throughout
this thesis the adversarial interface will always be denoted E). With this,
we can now express composable security of an H-protocol π in terms of
substitutions as follows.

Definition 2.4.3 (Construction). For P-resources REAL and IDEAL, and
a list of substitutions s1, s2, . . ., we say that an H-protocol π, for H = {E},
constructs IDEAL from REAL assuming s1, s2, . . ., denoted

REAL p π; s1,s2,...
=======⇒ IDEAL,

if there exists a simulator σ such that,

(s1, s2, . . .) =⇒ π REAL ‌ σ IDEAL.

The intuition behind Definition 2.4.3 is that if S is a reasonable set of
substitutions, then in any context where IDEAL is needed, π REAL can
be safely used instead. Recall that the advantage of composable security
notions, as opposed to simple substitutions capturing conventional game-
based security notions, is that they naturally compose. This is the central
point of composable security definitions, and is formalized by the following
theorem, following directly from [MR11] (we nevertheless provide a short
proof of this special formulation using substitutions).

Theorem 2.4.4 (Composition). For any P-resources R, S,T, H-protocols
π1,π2, for H = {E}, and lists of substitutions s1,1, s1,2, . . ., s2,1, s2,2, . . .,
if

R p π1; s1,1,s1,2,...
==========⇒ S and S p π2; s2,1,s2,2,...

==========⇒ T
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then
R p π2π1; s1,1,s1,2,...,s2,1,s2,2,...
===================⇒ T.

Proof. From the assumption, we have that there exist simulators σ1,σ2

such that:

• s1,1, s1,2, . . . =⇒ π1 R ‌ σ1 S, and

• s2,1, s2,2, . . . =⇒ π2 S ‌ σ2 T.

Therefore,

π2π1 R ≡ π2(π1 R)

‌ π2(σ1 S) (s1,1, s1,2, . . .)
≡ σ1(π2 S)

‌ σ1(σ2 T) (s2,1, s2,2, . . .)
≡ (σ1σ2)T,

which means that there exists a simulator σ (that is, σ1σ2), such that

s1,1, s1,2, . . . s2,1, s2,2, . . . =⇒ π2π1 R ‌ σT.





Chapter 3

Anonymity Preservation:
Secret-Key Primitives

3.1 Introduction

When transmitting messages in the symmetric-key setting, where com-
municating parties share secret keys a priori, traditionally confidentiality
and authenticity are the security properties that are mostly considered.
Confidentiality guarantees exclusivity of the receiving party (no one but
the receiver should be able to gain any partial information about the
transmitted message, possibly other than its length), while authenticity
guarantees exclusivity of the sending party (no one except the sender
should be able to convince the receiver that it indeed originated the
message). But in a scenario where there are more than just two com-
municating parties using the same protocol, e.g., many senders and one
receiver (as considered in this work), another important security property
must be taken into account, namely anonymity.

For the mentioned setting, we are more specifically interested in
external sender anonymity, that is, the property that guarantees that no
one but the receiver can learn from which sender a message originated.
The main focus of our work is on security definitions which capture
exactly this guarantee (in particular, note that we are not addressing
other common forms of anonymity usually found in the literature, arising
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for instance from traffic-flow analysis).

3.1.1 Motivation

Anonymity, as opposed to confidentiality and authenticity, in most settings
(as is the case for the one considered here) cannot be “created out of the
blue”; rather, an intrinsic property of anonymity is that it can be preserved.
In the game-based spirit of security definitions, this is reflected by the
fact that conventional anonymity notions are captured by the concept of
key-indistinguishability of a scheme originally intended to provide other
forms of security, as confidentiality or authenticity. More specifically, in
the symmetric-key setting this means that anonymity is a property that
needs to be provided in conjunction with confidentiality for encryption
schemes and with authenticity for MAC schemes.

But when considered from a composable standpoint, the fact that
anonymity can merely be preserved becomes even more evident: consider
for example a protocol employing a MAC scheme and shared secret keys
between the senders and the receiver, which is executed on top of an
insecure channel to obtain an authenticated channel; if one wishes for the
constructed channel to additionally be also anonymous, it must be the case
that the insecure channel is anonymous as well, and this construction is
still possible precisely if the employed MAC scheme not only is unforgeable,
but is also key-indistinguishable.

The latter considerations were made explicit by Alwen, Hirt, Maurer,
Patra, and Raykov in [AHM+15], and our work can be seen as a con-
tinuation and refinement of this line of research: Here we consider the
construction of an anonymous secure (confidential and authenticated)
channel from an anonymous authenticated one, and show that this is
possible precisely if the employed encryption scheme not only has in-
distinguishable ciphertexts, but also indistinguishable keys. Moreover,
we show that only if a secure authenticated encryption scheme which
is key-indistinguishable is employed, one can construct the anonymous
secure channel directly from the anonymous insecure one.

3.1.2 Contributions

We consider the following setting: n parties, the senders, wish to se-
curely and anonymously transmit messages to the same party, the re-



3.1. INTRODUCTION 33

ceiver, and we assume that the receiver a priori shares a (different) secret
key with each of the n senders. Since all of our treatment is in the
symmetric-key setting, and the considered protocols employ probabilistic
(as opposed to nonce-based) schemes, we often tacitly assume these two
facts throughout this chapter. Moreover, since the meaning of security
usually depends on the context, we adopt the convention that for a cryp-
tographic scheme by anonymous security we mean anonymity (in form of
key-indistinguishability) in conjunction with its conventionally associated
security notion, that is, confidentiality for encryption, authenticity for
MAC, and confidentiality plus authenticity (usually simply referred to as
just security) for authenticated encryption.

Game-Based Security Definitions. We start by providing game-based
security definitions capturing anonymity for both probabilistic encryption
(pE) and probabilistic authenticated encryption (pAE) using the substi-
tution framework introduced in Section 2.3. For the former, we revisit
the notion of key-indistinguishability, originally put forth by Fischlin
[Fis99], and subsequently treated in [Des00] by Desai and in [AR02] by
Abadi and Rogaway. In all three works this notion has been expressed for
n = 2 senders; here we generalize it to an arbitrary number of senders.
For nonce-based authenticated encryption (nAE), the analogous notion of
key-indistinguishability has been recently put forth by Chan and Rogaway
[CR19]. Here we propose a concise definition for the case of pAE instead.

For both pE and pAE we show the relevant implications among the
introduced security definitions, exposing the concrete security losses sur-
facing from the reductions. Furthermore, we formally show that indeed
the strong security notion of indistinguishability from random ciphertexts
(dubbed ind$, and valid for both schemes) implies key-indistinguishability.
Finally, we prove that the Encrypt-then-MAC (EtM) paradigm, applied
on secure and anonymous pE and probabilistic MAC (pMAC), yields pAE
which is not only secure, but crucially also anonymous, thus confirming
that EtM is anonymity-preserving.

Composable Security Definitions. We next move to the focal point
of our work, the composable treatment of anonymity. Here we intro-
duce alternative security definitions within the constructive cryptography
(CC) framework of Maurer and Renner [MR11, Mau12] introduced in
Section 2.4, which enjoy composability and allow to make explicit security
goals from an application point of view.
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First we phrase the desired security properties of (symmetric-key)
protocols as specific constructions of cryptographic communication chan-
nels. More concretely, we start by defining the following resources which
expose n interfaces to send messages and one to receive them: the inse-
cure anonymous channel (A-INS), the authenticated anonymous channel
(A-AUT), and the secure anonymous channel (A-SEC). Then we state
that a protocol (executed by the senders and the receiver, which share
secret keys a priori) provides authenticity in conjunction with anonymity
if it constructs A-AUT from A-INS, provides confidentiality in conjunction
with anonymity if it constructs A-SEC from A-AUT, and provides security
(i.e., confidentiality and authenticity) in conjunction with anonymity if it
constructs A-SEC directly from A-INS.

Secondly, we establish relations between the previously introduced
game-based security definitions and their composable counterparts, that
is, we show sufficiency conditions in terms of game-based definitions for
the above mentioned constructions. As already mentioned earlier, in
[AHM+15] it was shown that key-indistinguishable pMAC schemes enable
the construction of A-AUT from A-INS. Here we show that anonymous
secure pE enables the next logical step, namely the construction of A-SEC
from A-AUT. In terms of time-complexity, this significantly improves
upon the MAC-based solution proposed in [AHM+15] for the same con-
struction. Furthermore, we show that these two steps can be performed
in one shot using authenticated encryption instead, that is, we show that
anonymous secure pAE constructs a A-SEC directly from A-INS. Again,
this significantly improves upon the MAC-based solution proposed in
[AHM+15] for the same construction. Moreover, this provides further
evidence of the anonymity preservation of EtM.

Preferring Probabilistic Schemes for Anonymity. We observe
that our constructive treatment strengthens the role of probabilistic
authenticated encryption in contrast to its nonce-based counterpart when
it comes to anonymity. According to Rogaway [Rog04], a main advantage
provided by nonces is that

“encryption schemes constructed to be secure under nonce-based
security notions may be less prone to misuse”.

Nevertheless, this raises concerns about attacks in the multi-user (mu)
setting, where crucially anonymity lives. For this reason in TLS 1.3
a randomized nonces mechanism has been proposed for the employed
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nAE scheme, AES with GCM (Galois/Counter Mode). This recently
spawned work by Bellare and Tackmann [BT16] and Hoang, Tessaro,
and Thiruvengadam [HTT18], which initiated and refined the study of
mu security of nAE in order to rigorously formalize security under such
randomized nonces mechanism (but they did not address anonymity, in
the form of key-indistinguishability).

But quoting again Rogaway [Rog11, I.8 (page 22)],
“[if] an IV-based encryption scheme [...] is good in the nonce-
based framework [...] then it is also good in the probabilistic
setting”,

which implies that an ind$-secure nAE scheme is an ind$-secure pAE scheme,
when the nonce is randomized (if one ignores the concept of associated
data). Therefore, in view of our previously mentioned result attesting
that ind$-secure pAE implies anonymity, our work can be considered
as a confirmation that the random nonce mechanism, if used with an
ind$-secure nAE scheme and under the assumption that the nonces are
indeed truly uniformly random, also provides anonymity. Note that our
consideration here is rather informal, and a more thorough study should
be carried out to also incorporate the issue of nonce repetition and related
birthday paradox security bounds (in our discussion, we are assuming a
setting where not too many messages are exchanged).

This is to be compared to a recent work by Chan and Rogaway [CR19],
which studies the anonymity of nAE: the authors observe that because of
the session-related nature of the nonces, nAE actually fails to generally
provide anonymity. For this reason, they introduce a transformation
(dubbed NonceWrap) which converts an nAE scheme into a (syntactically
different) new scheme, anonymous nAE (anAE), which they show does
achieve anonymity (i.e., key-indistinguishability).

3.1.3 Related Work

The concept of key-indistinguishability has been first introduced under
the name of “key-hiding private-key encryption” by Fischlin in [Fis99]
(captured by our notion of 2-ik-cpa, according to Definition 3.2.1). Subse-
quently, in [Des00], Desai also studied the problem introducing the con-
cept of “non-separability of keys”, but specifically for encryption schemes
based on block ciphers. Later, in [AR02], Abadi and Rogaway pre-
sented a security notion called “which-key concealing”, that is basically
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identical to Fischlin’s, but they defined security as a combination of key-
indistinguishability and ciphertext-indistinguishability (captured by our
notion of 2-ik-ind-cpa according to Definition 3.2.3). They also claimed that
popular modes of operation for symmetric encryption yield key-private
encryption schemes. We will prove this formally in Section 3.2.2. The
concept of key-indistinguishability has been translated to the public-key
setting by Bellare, Boldyreva, Desai, and Pointcheval in [BBDP01], where
the terms key-privacy and indistinguishability of keys were originally
suggested.

As previously mentioned, regarding key-indistinguishability of ae, in
a recent work Chan and Rogaway [CR19] introduce the nonce-based
counterpart of our notion for pAE, Definition 3.2.4, which is crucially not
directly applicable to nAE, but rather to anAE, a syntactically different
scheme which can be obtained from nAE through the transformation
NonceWrap that they introduce.

3.2 Game-Based Security of pE and pAE

For the conventional security notions capturing confidentiality and authen-
ticity for probabilistic encryption (pE) and probabilistic authenticated
encryption (pAE), as well as for the systems used to define notions of
security for pE and pAE, we refer to Section 2.3.4.

Regarding the game-based definitions of anonymity for pE and pAE, we
adopt what in the literature is usually termed key-indistinguishability. We
begin by providing a game-based security definition capturing exclusively
the notion of anonymity (in terms of key-indistinguishability) of pE and
pAE. Roughly speaking, the notion guarantees that an adversary cannot
distinguish between n distinct and independent copies of system Eki

,
each of which is parameterized by a different, freshly and independently
sampled key ki, from n copies of the same system Ek1

, each of which is
parameterized by the same key k1 (previously freshly sampled).

Definition 3.2.1 (n-ik-cpa).

[Ek1 , . . . ,Ekn ] ‌ JEk1 , . . . ,Ek1︸ ︷︷ ︸
n times

K,

for independent k1, . . . , kn ← Gen.
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Definition 3.2.2 (n-ik-cca).

[JEk1
,Dk1

K, . . . , JEkn
,Dkn

K] ‌ Jρctxt(Ek1
), . . . , ρctxt(Ek1

)︸ ︷︷ ︸
n times

K,

for independent k1, . . . , kn ← Gen.

Next, we define the coupling of the traditional security goal of pE/pAE
with anonymity. For both notions, we use the term anonymous security ;
specifically, by anonymous and secure pE we mean key-indistinguishable
and confidential encryption, whereas by anonymous and secure pAE we
mean key-indistinguishable, confidential, and authenticated encryption.

Definition 3.2.3 (n-ik-ind-cpa).

[Ek1
, . . . ,Ekn

] ‌ Jρcpa(Ek1
), . . . , ρcpa(Ek1

)︸ ︷︷ ︸
n times

K,

for independent k1, . . . , kn ← Gen.

Definition 3.2.4 (n-ik-ae).

[JEk1 ,Dk1K, . . . , JEkn ,DknK] ‌ Jρae(Ek1), . . . , ρ
ae(Ek1)︸ ︷︷ ︸

n times

K,

for independent k1, . . . , kn ← Gen.

3.2.1 Relations Among Notions
We now show that the combinations of ciphertext-indistinguishability
and key-indistinguishability, ind-cpa + ik-cpa for pE and ae + ik-ae for
pAE, are equivalent to the respective game-based notions capturing both
goals simultaneously, ik-ind-cpa for pE and ik-ae for pAE, regardless of the
number of users.

We start by showing that key-indistinguishability is preserved up to
constant increase when the number of users is incremented.

Lemma 3.2.5. 2-ik-cpa n−1−−−→ n-ik-cpa, for any n ∈ N.

Proof. Let k1, . . . , kn ← Gen, and consider

ρi(JX,YK) .
= JX, . . . ,X︸ ︷︷ ︸

i times

,Y,Eki+2
, . . . ,Ekn

K,

for i ∈ [n− 1]. Note that:
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ind-cpa ∧ 2-ik-cpa n-ik-cpa

n-ik-ind-cpa

n-ik-ae

ae ∧ 2-ik-cca n-ik-cca

Figure 3.1: Relations among ciphertext-indistinguishability and key-
indistinguishability notions. The gray arrows indicate trivial implications.

• ρ1([Ek1
,Ek2

]) ≡ [Ek1
, . . . ,Ekn

],

• ρn−1(JEk1
,Ek1

K) ≡ JEk1
, . . . ,Ek1︸ ︷︷ ︸
n times

K, and

• ρi(JEk1 ,Ek1K) ≡ ρi+1([Ek1 ,Eki+2 ]), for any i ∈ [n− 2].

Then, since by 2-ik-cpa we have

[Ek1
,Eki+1

] ‌ JEk1
,Ek1

K,

for any i ∈ [n− 1], by Lemma 2.3.2 it follows that

ρ1([Ek1 ,Ek2 ]) ‌ ρn−1(JEk1 ,Ek1K).

Therefore,
[Ek1

, . . . ,Ekn
] ‌ JEk1

, . . . ,Ek1︸ ︷︷ ︸
n times

K.

Lemma 3.2.6. 2-ik-cca n−1−−−→ n-ik-cca, for any n ∈ N.

Proof. Let k1, . . . , kn ← Gen, and consider

• ρ1(JJX1,Y1K, JX2,Y2KK)
.
= JJX1,Y1K, JX2,Y2K, JEk3 ,Dk3K, . . . , JEkn ,DknKK,

and
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• ρi(JJX1,Y1K, JX2,Y2KK)
.
= Jρctxt(X1), . . . , ρ

ctxt(X1)︸ ︷︷ ︸
i times

,

JX2,Y2K, JEki+2
,Dki+2

K, . . . , JEkn
,Dkn

KK,

for i = 2, . . . , n− 1.

Note that:

• ρ1([JEk1
,Dk1

K, JEk2
,Dk2

K]) ≡ [JEk1
,Dk1

K, . . . , JEkn
,Dkn

K],

• ρn−1(Jρctxt(Ek1
), ρctxt(Ek1

)K) ≡ Jρctxt(Ek1
), . . . , ρctxt(Ek1

)︸ ︷︷ ︸
n times

K, and

• ρi(Jρctxt(Ek1
), ρctxt(Ek1

)K) ≡ ρi+1([JEk1
,Dk1

K, JEki+2
,Dki+2

K]), for
any i ∈ [n− 2].

Then, since by 2-ik-cca we have

[JEk1
,Dk1

K, JEki+1
,Dki+1

K] ‌ Jρctxt(Ek1
), ρctxt(Ek1

)K,

for any i ∈ [n− 1], by Lemma 2.3.2 it follows that

ρ1([JEk1 ,Dk1K, JEk2 ,Dk2K]) ‌ ρn−1(Jρctxt(Ek1), ρ
ctxt(Ek1)K).

Therefore,

[JEk1
,Dk1

K, . . . , JEkn
,Dkn

K] ‌ Jρctxt(Ek1
), . . . , ρctxt(Ek1

)︸ ︷︷ ︸
n times

K.

Next, we confirm the natural intuition that ciphertext-indistinguishabil-
ity is also preserved when coupled with key-indistinguishability.

Lemma 3.2.7. (2-ik-cpa, ind-cpa)
n−1,1−−−−−→ n-ik-ind-cpa.

Proof. Let k1, . . . , kn ← Gen, and consider

ρ(X)
.
= JX, . . . ,X︸ ︷︷ ︸

n times

K.
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Then, using Lemma 3.2.5:

[Ek1
, . . . ,Ekn

] ‌ JEk1
, . . . ,Ek1︸ ︷︷ ︸
n times

K (n-ik-cpa)

= ρ(Ek1)

‌ ρ ◦ ρcpa(Ek1) (ind-cpa)
= Jρcpa(Ek1), . . . , ρ

cpa(Ek1)︸ ︷︷ ︸
n times

K.

Lemma 3.2.8. (2-ik-cca, ae)
n−1,1−−−−−→ n-ik-ae.

Proof. Let k1, . . . , kn ← Gen, and consider

ρ(JX,YK) .
= Jρctxt(X), . . . , ρctxt(X)︸ ︷︷ ︸

n times

K.

Moreover, note that ρae ◦ ρctxt ≡ ρae. Then, using Lemma 3.2.6:

[JEk1 ,Dk1K, . . . , JEkn ,DknK] ‌ Jρctxt(Ek1), . . . , ρ
ctxt(Ek1)︸ ︷︷ ︸

n times

K (n-ik-cca)

= ρ(JEk1
,Dk1

K)
‌ ρ ◦ ρae(Ek1

) (ae)
= Jρae ◦ ρctxt(Ek1

) . . . , ρae ◦ ρctxt(Ek1
)︸ ︷︷ ︸

n times

K

≡ Jρae(Ek1), . . . , ρ
ae(Ek1)︸ ︷︷ ︸

n times

K.

Note that similarly to Lemma 3.2.7, also n-ik-cpa security coupled with
ind-cpa security implies n-ik-ind-cpa security, and similarly to Lemma 3.2.8,
also n-ik-cca security coupled with ae security implies n-ik-ae security.
We now turn to the necessary conditions; first we show that indeed the
combined notions of ciphertext-indistinguishability and key-indistinguisha-
bility imply key-indistinguishability.

Lemma 3.2.9. n-ik-ind-cpa 2−→ 2-ik-cpa.
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Proof. Let k1, . . . , kn ← Gen, and consider ρ1(JX1, . . . ,XnK) .
= JX1,X2K

and ρ2(JX1, . . . ,XnK) .
= JX1,X1K. Then:

[Ek1
,Ek2

] = ρ1([Ek1
, . . . ,Ekn

])

‌ ρ1(Jρcpa(Ek1
), . . . , ρcpa(Ek1

)︸ ︷︷ ︸
n times

K) (n-ik-ind-cpa)

= Jρcpa(Ek1
), ρcpa(Ek1

)K
= ρ2(Jρcpa(Ek1

), . . . , ρcpa(Ek1
)︸ ︷︷ ︸

n times

K)

‌ ρ2([Ek1 , . . . ,Ekn ]) (n-ik-ind-cpa)
= JEk1 ,Ek1K.

Lemma 3.2.10. n-ik-ae 2−→ 2-ik-cca.

Proof. Let k1, . . . , kn ← Gen, and consider ρ1(JX1, . . . ,XnK) .
= JX1,X2K

and ρ2(JX1, . . . ,XnK) .
= Jρctxt(X1), ρ

ctxt(X1)K. Moreover, note that ρctxt ◦
ρae = ρctxt ◦ ρctxt ◦ ρcpa ≡ ρctxt ◦ ρcpa = ρae. Then:

[JEk1
,Dk1

K, JEk2
,Dk2

K] = ρ1([JEk1
,Dk1

K, . . . , JEkn
,Dkn

K])
‌ ρ1(Jρae(Ek1

), . . . , ρae(Ek1
)︸ ︷︷ ︸

n times

K) (n-ik-ae)

= Jρae(Ek1), ρ
ae(Ek1)K

≡ Jρctxt ◦ ρae(Ek1), ρ
ctxt ◦ ρae(Ek1)K

= ρ2(Jρae(Ek1), . . . , ρ
ae(Ek1)︸ ︷︷ ︸

n times

K)

‌ ρ2([JEk1
,Dk1

K, . . . , JEkn
,Dkn

K]) (n-ik-ae)
= Jρctxt(JEk1

,Dk1
K), ρctxt(JEk1

,Dk1
K)K

≡ Jρctxt(Ek1
), ρctxt(Ek1

)K.

Note that similarly to Lemma 3.2.9, n-ik-ind-cpa security also implies
n-ik-cpa security, and similarly to Lemma 3.2.10, n-ik-ae security also
implies n-ik-cca security. For the last necessary condition, we show that
indeed the combined notions of ciphertext-indistinguishability and key-
indistinguishability imply ciphertext-indistinguishability.

Lemma 3.2.11. n-ik-ind-cpa 1−→ ind-cpa.
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Proof. Let k1, . . . , kn ← Gen, and consider ρ(JX1, . . . ,XnK) .
= X1. Then:

Ek1
= ρ([Ek1

, . . . ,Ekn
])

‌ ρ(Jρcpa(Ek1
), . . . , ρcpa(Ek1

)︸ ︷︷ ︸
n times

K) (n-ik-ind-cpa)

= ρcpa(Ek1).

Lemma 3.2.12. n-ik-ae 1−→ ae.

Proof. Let k1, . . . , kn ← Gen, and consider ρ(JX1, . . . ,XnK) .
= X1. Then:

JEk1
,Dk1

K = ρ([JEk1
,Dk1

K, . . . , JEkn
,Dkn

K])
‌ ρ(Jρae(Ek1

), . . . , ρae(Ek1
)︸ ︷︷ ︸

n times

K) (n-ik-ae)

= ρae(Ek1).

Therefore, we showed that an encryption scheme is n-ik-ind-cpa secure if
and only if it is both n-ik-cpa and ind-cpa secure, and that an authenticated
encryption scheme is n-ik-ae secure if and only if it is both n-ik-cca and
ae secure. Clearly both results can be cast down to the case of 2 users, in
line with the security definitions of [Fis99, AR02].

Corollary 3.2.13. (ind-cpa, 2-ik-cpa) ⇐⇒ 2-ik-ind-cpa.

Corollary 3.2.14. (ae, 2-ik-cca) ⇐⇒ 2-ik-ae.

3.2.2 Uniform Ciphertexts Imply Anonymity
In this section we revisit a stronger security notion for symmetric encryp-
tion, which we call indistinguishability from uniform ciphertexts. It can
be defined for both pE, dubbed ind$-cpa-security, and for pAE, dubbed
ae$-security. We show a simple folklore result that was stated in [AR02]
(of which, to the best of our knowledge, there is no formal proof yet).
This definition intuitively should capture indistinguishability of plaintexts,
but it actually overshoots this goal, and it is stronger in the sense that
it also implies indistinguishability of keys. Recall that ind-cpa and ae
security do not imply indistinguishability of keys, but it turns out to
be easier to prove that schemes meet the stronger notion, which is also
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conceptually simpler. Essentially, instead of choosing a random message
to be encrypted in the ideal world, a random ciphertext is output (thus
neglecting encryption altogether).

This stronger security notion appears to have been originally intro-
duced by Rogaway, Bellare, Black, and Krovetz in [RBBK01] for proving
the security of the so-called offset codebook (OCB) mode of operation for
symmetric encryption.1 A number of other important results, such as the
security of counter (CTR) or cipher block chaining (CBC) modes, first
carried out in [BDJR97], have been later adapted by Rogaway [Rog04]
to show that such schemes actually satisfy this stronger definition.2 In
fact, as argued in [AR02] (where this security notion—targeted to en-
cryption rather than authenticated encryption—is dubbed type-1 secu-
rity), by the above mentioned folklore result which we prove here, such
modes indeed yield key indistinguishable schemes. We remark that sub-
sequently, this definition was also used in the field of provable secure
steganography (for both symmetric-key and asymmetric-key schemes)
[HLv02, vH04, Möl04, BC05]. In the literature, this definition is alter-
natively called indistinguishability from random bits/bitstrings or simply
pseudorandom ciphertexts security.

In order to formalize this notion, we need to introduce the system $
(with implicit dependency on a fixed encryption scheme Π) which on input
any message m ∈M simply outputs a uniformly sampled ciphertext of
appropriate length, that is, according to our Definition 2.3.3, a uniform
random bitstring of length |m|+ τ , where τ ∈ N is the expansion factor
defined by Π (thus, in particular, $ does not make use of the underlying
encryption function defined by Π). Then for the case of pE we can increase
the security requirement as follows.

Definition 3.2.15 (ind$-cpa). Ek ‌ $, for k ← Gen.

The analogous notion for pAE was introduced by Rogaway and Shrimp-
ton in [RS06], and is adapted within our framework as follows.

Definition 3.2.16 (ae$). JEk,DkK ‌ ρctxt($), for k ← Gen.

1 Note that OCB actually yields more than a secure encryption scheme: in [RBBK01]
it is actually shown that OCB is confidential according to the mentioned stronger
notion, but also authentic, thus making it a secure authenticated encryption scheme.

2 All of those results are actually geared towards nonce-based symmetric encryption,
but they also apply to our setting.



44 CHAPTER 3. SECRET-KEY ANONYMITY PRESERVATION

Next, starting with the case of pE, we show that the stronger notion of
ind$-cpa indeed implies ik-ind-cpa (and thus also both ik-cpa and ind-cpa),
as originally pointed out in [AR02]. This is captured formally by the
following statement, shown for 2 users for cleaner presentation, but easily
generalized to n users.

Theorem 3.2.17. ind$-cpa 3−→ ik-ind-cpa.

Proof. Let k1, k2 ← Gen, and consider

• ρ1(X)
.
= [X,Ek2

],

• ρ2(X)
.
= [$,X], and

• ρ3(X)
.
= JX′,Y′K, for some systems X′ and Y′ that behave as

follows:

– On input m ∈ M to X′, forward m to X, obtain c ∈ C, and
output c.

– On input m ∈ M to Y′, forward m to X, obtain c ∈ C, and
output c.

Note that ρ3 essentially duplicates the system X, and therefore we have
ρ3($) ≡ [$,$] and ρ3 ◦ ρcpa(Ek1

) ≡ Jρcpa(Ek1
), ρcpa(Ek1

)K. To see this,
observe that both $ and ρcpa(Ek1) are stateless and internally sample
fresh and independent randomness on each new input. Moreover, note
that ρcpa($) ≡ $, since first sampling a uniformly random message m̃ $←
{0, 1}|m|, on input message m, and subsequently sampling a uniformly
random ciphertext c $← {0, 1}|m̃|, is the same as directly sampling a
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uniformly random ciphertext c $← {0, 1}|m|, on input message m. Then:

[Ek1
,Ek2

] = ρ1(Ek1
)

‌ ρ1($) (ind$-cpa)
= [$,Ek2

]

= ρ2(Ek2
)

‌ ρ2($) (ind$-cpa)
= [$,$]
≡ ρ3($)
≡ ρ3 ◦ ρcpa($)
‌ ρ3 ◦ ρcpa(Ek1

) (ind$-cpa)
≡ Jρcpa(Ek1

), ρcpa(Ek1
)K.

Finally, the analogous statement for the case of pAE follows as a
natural lifting of Theorem 3.2.17, that is, we next show that the stronger
notion of ae$ indeed implies ik-ae (and thus also both ik-cca and ae). We
remark that this fact was informally pointed out by Rogaway [Rog13].

Theorem 3.2.18. ae$ 3−→ ik-ae.

Proof. Let k1, k2 ← Gen, and consider

• ρ1(JX,YK) .
= [JX,YK, JEk2

,Dk2
K],

• ρ2(JX,YK) .
= [ρctxt($), JX,YK], and

• ρ3(JX,YK) ≡ JJX′1,Y′1K, JX′2,Y′2KK, for some correlated systems X′1,
Y′1, X′2, and Y′2 that behave as follows: Initially set Q1,Q2 ⊆M×C
to ∅, and then:

– On input m ∈M to X′1, forward m to X, obtain c ∈ C, set Q1

to Q1 ∪ {(m, c)}, and output c.

– On input c ∈ C to Y′1, if there exists an m ∈ M such that
(m, c) ∈ Q1, then output m, otherwise output ⊥.

– On input m ∈M to X′2, forward m to X, obtain c ∈ C, set Q2

to Q2 ∪ {(m, c)}, and output c.
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– On input c ∈ C to Y′2, if there exists an m ∈ M such that
(m, c) ∈ Q2, then output m, otherwise output ⊥.

Also recall the transformation ρenc from Section 2.3.4, which is such
that ρenc(JX,YK) ≡ X. Note that ρ3 ignores system Y, and there-
fore, since both ρctxt($) and ρae(Ek1

) are stateless and internally sam-
ple fresh and independent randomness on each new input, we have
ρ3 ◦ ρctxt($) ≡ [ρctxt($), ρctxt($)] and ρ3 ◦ ρae(Ek1

) ≡ Jρae(Ek1
), ρae(Ek1

)K.
Thus, ρ3 essentially duplicates systems ρctxt($) and ρae(Ek1). Moreover,
note that ρae ◦ ρenc ◦ ρctxt($) ≡ ρctxt($), since the decryption oracle of
ρctxt is ignored, and since first sampling a uniformly random message
m̃ $← {0, 1}|m|, on input message m, and subsequently sampling a uni-
formly random ciphertext c $← {0, 1}|m̃|, is the same as directly sampling
a uniformly random ciphertext c $← {0, 1}|m|, on input message m. Then:

[JEk1
,Dk1

K, JEk2
,Dk2

K] = ρ1(JEk1
,Dk1

K)
‌ ρ1 ◦ ρctxt($) (ae$)
= [ρctxt($), JEk2

,Dk2
K]

= ρ2(JEk2
,Dk2

K)
‌ ρ2 ◦ ρctxt($) (ae$)
= [ρctxt($), ρctxt($)]
≡ ρ3 ◦ ρctxt($)
≡ ρ3 ◦ ρae ◦ ρenc ◦ ρctxt($)
‌ ρ3 ◦ ρae ◦ ρenc(JEk1

,Dk1
K) (ae$)

= ρ3 ◦ ρae(Ek1
)

≡ Jρae(Ek1
), ρae(Ek1

)K.

3.2.3 Anonymity Preservation of Encrypt-then-MAC

After having related the various game-based notions for pE and for pAE
separately, we finally show how the anonymity enhanced security defi-
nitions for pE relate with those of pAE. For this, we need to introduce
the concept of message authentication code (MAC) and its security and
anonymity notions. We introduce a very specific syntax for Message
Authentication Codes (MAC) which will turn out to be very useful in
order to analyze the Encrypt-then-MAC paradigm. More precisely, we
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consider MAC schemes which take as messages ciphertexts arising from
some encryption scheme, and which provide an interface optimized for
being coupled with such scheme. In this section we revisit the security
and anonymity notions of MAC, the latter having being originally intro-
duced in [AHM+14] (as a form of key-indistinguishability), and used in
[AHM+15] to construct an authenticated and anonymous channel. Note
that since we are interested in anonymity in this thesis, it is impera-
tive that we only consider probabilistic MAC (pMAC), as pointed out in
[AHM+14, AHM+15].

Definition 3.2.19 (MAC Scheme). A (probabilistic) message authentica-
tion code (MAC) scheme Σ

.
= (Gen, Tag, Vrf) over key-space K, message-

space C, and tag-space T (with ⊥ /∈ K ∪ C ∪ T ), is such that

• Gen is a distribution (often the uniform one) over K;

• Tag : K × C → C × T is a probabilistic function;

• Vrf : K × C × T → C ∪ {⊥} is a deterministic function.

As customary, for k ∈ K we use the short-hand notation Tagk(·) for
Tag(k, ·) and Vrfk(·, ·) for Vrf(k, ·, ·). Moreover, we assume correctness of
Σ, that is, for all keys k distributed according to Gen, and all ciphertext-tag
pairs (c, τ) ∈ C × T ,

Vrfk(c, τ) =

{
c if (c, τ) ∈ supp (Tagk(c)),
⊥ otherwise.

As for pE and pAE, in order to define the security and anonymity of a
fixed MAC scheme Σ, we need to define the following single and double
interface systems (where the dependency on Σ is implicit), parameterized
by some key k ∈ K:

• JTk,VkK:

– On input a ciphertext c ∈ C, return Tagk(c) ∈ C × T .
– On input a ciphertext-tag pair (c, τ) ∈ C ×T , return Vrfk(c, τ)
∈ C ∪ {⊥}.

• ρuf(X) ≡ JX′,Y′K, for some correlated systems X′ and Y′ that
behave as follows: Initially set Q ⊆ C × T to ∅, and then:
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– On input c ∈ C to X′, forward c to X, obtain (c, τ) ∈ C × T ,
set Q to Q∪ {(c, τ)}, and output (c, τ).

– On input (c, τ) ∈ C × T to Y′, if (c, τ) ∈ Q then output c,
otherwise output ⊥.

For convenience we define JTk,V
⊥K .

= ρuf(Tk).
The classical security notion of MAC is existential unforgeability under

chosen messages attack. This kind of game-based definition is often
formulated as a game which an adversary is supposed to win. In this
thesis we take the dual view that such a definition can be equivalently
phrased as a distinguishing problem, hence a substitution (see for example
[Mau02, MPR07, Ros21]).

Definition 3.2.20 (uf-cma). JTk,VkK ‌ ρuf(Tk), for k ← Gen.

The concept of anonymous MAC schemes was crystallized by Alwen
et al., which in [AHM+14] introduced the notion of key-indistinguishable
pMAC. In the following definition, we introduce a new all-in-one definition
for pMAC, which captures both unforgeability and anonymity.

Definition 3.2.21 (n-ik-uf-cma).

[JTk1
,Vk1

K, . . . , JTkn
,Vkn

K] ‌ Jρuf(Tk1
), . . . , ρuf(Tk1

)︸ ︷︷ ︸
n times

K,

for independent k1, . . . , kn ← Gen.

Recall that Bellare and Namprempre [BN00] and Krawczyk [Kra01]
have shown that the combination of a strongly unforgeable (uf-cma) MAC
and a secure (ind-cpa) encryption scheme, performed according to the
Encrypt-then-MAC (EtM) paradigm, yields an encryption scheme which
is both secure (ind-cpa) and unforgeable (int-ctxt, the equivalent notion
of uf-cma for encryption). Later, Shrimpton [Shr04] showed that a nice
all-in-one security definition for secure authenticated encryption, ae, is
equivalent to the combination ind-cpa and int-ctxt, thus attesting that
EtM performed on a uf-cma-secure MAC scheme and an ind-cpa-secure
encryption scheme, yields a ae-secure authenticated encryption scheme.
Using our notation from Section 2.3.4 and above, the encryption scheme
EtM(Π,Σ)

.
= (Ĝen, T̂ag, V̂rf), resulting from this specific composition of an
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encryption scheme Π
.
= (GenΠ, Enc, Dec) (with key-space KΠ) and a MAC

scheme Σ
.
= (GenΣ, Tag, Vrf) (with key-space KΣ) is defined as follows:3

• Ĝen is the product distribution of GenΠ and GenΣ over KΠ ×KΣ;

• Êncke,ka
.
= Tagka ◦ Encke ;

• V̂rfke,ka
.
= Decke ◦ Vrfka .

Note that in order for correctness to hold, we further need to assume that
⊥ ∈M, and that Enck(⊥) = ⊥ for any k ∈ KΠ.

If we now want to define security of the composed scheme Π̂
.
=

EtM(Π,Σ), we need to introduce a simple operator between (single-
interface) systems, namely cascading : Informally, given systems X and
Y, we define the new system X ▷Y as the system4 that on input x com-
putes y

.
= X(x), and returns z

.
= Y(y) (where we are assuming matching

domains). As we did for Π, we can define systems Tk and Vk relative
to Σ. Then Êncke,ka is modeled by Êke,ka

.
= Eke ▷ Tka , and D̂ecke,ka by

D̂ke,ka
.
= Vka ▷Dke . Recalling the security definitions from Section 2.3.4

and above, the statement that Π̂ is secure follows.

Theorem 3.2.22. (ind-cpa(Π), uf-cma(Σ))
1,1−−−→ ae(EtM(Π,Σ)).

Proof. Let ke ← GenΠ, ka ← GenΣ, and consider

• ρ1(JX,YK) .
= JEke ▷X,Y ▷DkeK and

• ρ2(X)
.
= ρctxt(X ▷Tka).

3 Recall that the symbol ◦ in this context represents function composition.
4 This operator is also formally defined later in Definition 5.2.2.
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Then:

JÊke,ka , D̂ke,kaK = JEke ▷Tka ,Vka ▷DkeK
= ρ1(JTka ,VkaK)

‌ ρ1(JTka ,V⊥K) (uf-cma)

= JEke ▷Tka ,V⊥ ▷DkeK
≡ ρctxt(Eke ▷Tka)

= ρ2(Eke)

‌ ρ2 ◦ ρcpa(Eke) (ind-cpa)
= ρctxt(ρcpa(Eke) ▷Tka)

≡ ρctxt ◦ ρcpa(Eke ▷Tka)

= ρae(Êke,ka).

We finally show the important fact that EtM is anonymity-preserving,
in the sense that if an encryption scheme Π is both ind-cpa-secure and
ik-cpa-secure (that is, ik-ind-cpa-secure) and a MAC scheme Σ is both
uf-cma-secure and ik-cma-secure (that is, ik-uf-cma-secure), then EtM(Π,Σ)
not only is ae-secure, but also ik-cca-secure (that is, ik-ae-secure). This
is captured formally by the following statement, shown for 2 users for
cleaner presentation, but easily generalized to n users.

Theorem 3.2.23.

(2-ik-ind-cpa(Π), 2-ik-uf-cma(Σ))
1,1−−−→ 2-ik-ae(EtM(Π,Σ)).

Proof. Let ke1, k
e
2 ← GenΠ, ka1, ka2 ← GenΣ, and consider

• ρ1(JJX1,Y1K, JX2,Y2KK)
.
= [JEke

1
▷X1,Y1 ▷Dke

1
K, JEke

2
▷X2,Y2 ▷

Dke
2
K] and

• ρ2(JX,YK) .
= Jρctxt(X ▷Tka

1
), ρctxt(Y ▷Tka

1
)K.
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Then:

[JÊke
1,k

a
1
, D̂ke

1,k
a
1
K, JÊke

2,k
a
2
, D̂ke

2,k
a
2
K]

= [JEke
1
▷Tka

1
,Vka

1
▷Dke

1
K, JEke

2
▷Tka

2
,Vka

2
▷Dke

2
K]

= ρ1([JTka
1
,Vka

1
K, JTka

2
,Vka

2
K])

‌ ρ1(JJTka
1
,V⊥K, JTka

1
,V⊥KK) (2-ik-uf-cma)

= JJEke
1
▷Tka

1
,V⊥ ▷Dke

1
K, JEke

2
▷Tka

1
,V⊥ ▷Dke

2
KK

≡ Jρctxt(Eke
1
▷Tka

1
), ρctxt(Eke

2
▷Tka

1
)K

= ρ2([Eke
1
,Eke

2
])

‌ ρ2(Jρcpa(Eke
1
), ρcpa(Eke

1
)K) (2-ik-ind-cpa)

= Jρctxt(ρcpa(Eke
1
) ▷Tka

1
), ρctxt(ρcpa(Eke

1
) ▷Tka

1
)K

≡ Jρctxt ◦ ρcpa(Eke
1
▷Tka

1
), ρctxt ◦ ρcpa(Eke

1
▷Tka

1
)K

= Jρae(Êke
1,k

a
1
), ρae(Êke

1,k
a
1
)K.

We will confirm Theorem 3.2.23 with a composable approach in the
next section.

3.3 Composable Security of pE and pAE

In this section we turn our attention to composable security, as opposed to
game-based security. For this, we make use of the constructive cryptogra-
phy (CC) framework by Maurer and Renner [MR11, Mau12] as introduced
in Section 2.4.

3.3.1 Anonymous Channels

There are four n-resources that we consider in this chapter. The first,
KEYKn↔1, models the initial symmetric-key setup: it generates n indepen-
dent keys k1, . . . , kn ∈ K according to an implicitly defined distribution
Gen over K, and for i ∈ [n] it outputs ki at interface Si; at interface R it
outputs the list (k1, . . . , kn) of all generated keys, while it outputs nothing
at interface E. The remaining three n-resources model the anonymous
channels for n senders and one receiver mentioned above (for messages over
some set X ), where we assume a central adversary that is in full control
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S R

A-INS

S Rx
Si

...

...

⋄

E

j,x x̂

E

⋄
R

j′,x̂

S R

A-AUT

S Rx
Si

...

...

⋄

E

j,x j

E

⋄
R

j′,x,i

S R

A-SEC

S Rx
Si

...

...

⋄

E

j,|x| j

E

⋄
R

j′,x,i

Figure 3.2: Sketches of the anonymous channel resources.
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A-INSXn→1

S,R ⊆ N×X
cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(x ∈ X ): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS , x)}

Interface E(⋄):
O← {(j, x) ∈ S | cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(x ∈ X ):
tR ← tR + 1
R← R ∪ {(tR, x)}

Interface R(⋄):
O← {(j, x) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 3.3: Formal description of the insecure anonymous channel
A-INSXn→1.
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A-AUTXn→1

S,R ⊆ (N×X ×N) ∪ (N× {⊥}2)
cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(x ∈ X ): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS , x, i)}

Interface E(⋄):
O← {(j, x) ∈ N×X | ∃i ∈ [n] : (j, x, i) ∈ S,cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(j ∈ N ∪ {−1}):
if ∃x ∈ X , i ∈ [n] : (j, x, i) ∈ S then

tR ← tR + 1
R← R ∪ {(tR, x, i)}

else if j = −1 then
tR ← tR + 1
R← R ∪ {(tR,⊥,⊥)}

Interface R(⋄):
O← {(j, x, i) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 3.4: Formal description of the authenticated anonymous channels
A-AUTXn→1, with the differences from A-INSXn→1 highlighted in dark gray.



3.3. COMPOSABLE SECURITY OF PE AND PAE 55

A-SECXn→1

S,R ⊆ (N×X × N) ∪ (N× {⊥}2)
cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(x ∈ X ): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS , x, i)}

Interface E(⋄):
O← {(j, |x|) ∈ N× N | ∃i ∈ [n] : (j, x, i) ∈ S, cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(j ∈ N ∪ {−1}):
if ∃x ∈ X , i ∈ [n] : (j, x, i) ∈ S then

tR ← tR + 1
R← R ∪ {(tR, x, i)}

else if j = −1 then
tR ← tR + 1
R← R ∪ {(tR,⊥,⊥)}

Interface R(⋄):
O← {(j, x, i) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 3.5: Formal description of the secure anonymous channels
A-SECXn→1, with the differences from A-AUTXn→1 highlighted in dark gray.
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of the physical communication between the senders and the receiver, that
is, an adversary that can delete, repeat, and reorder messages.5 A-INSXn→1

models the channel which leaks every message input by any sender (but
not their identities) directly to the adversary. Note that in particular
this means that the receiver does not directly receive the messages sent
by the senders. Moreover, A-INSXn→1 allows the adversary to inject any
message to the receiver (thus, in particular, also the ones originally sent
by the senders). Note that this channel, while providing anonymity, is
per se pretty useless, since the receiver has also no information about
the identity of the sender of any message. Instead, A-AUTXn→1, while still
leaking all the messages sent by the senders directly to the adversary,
does not allow the latter to inject any message; instead, the adversary
can now select messages that it wants to be forwarded to the receiver.
Moreover, the forwarded messages also carry the identity of the original
sender, still hidden to the adversary. Finally, A-SECXn→1 essentially works
as A-AUTXn→1, except that now only the lengths of the messages sent by
the senders are leaked directly to the adversary. We sketch the three
anonymous channels in Figure 3.2 and provide a formal description of
the behavior of the systems implementing such n-resources in Figures 3.3
to 3.5.

3.3.2 Overview of the Results

In [AHM+15] it was already shown6 that n-ik-uf-cma-secure (as defined in
Section 3.2.3) pMAC constructs A-AUTMn→1 from A-INSM×Tn→1 and KEYKn↔1;
within our model, this result is captured by the following statement:

[KEYKn↔1,A-INSM×Tn→1 ] p
πpMAC;n-ik-uf-cma
============⇒ A-AUTMn→1,

(for appropriate n-protocol πpMAC implementing pMAC). Here we instead
focus on the following further constructions:

5 Note that while deletion is a physical phenomenon, and can thus not be prevented
using cryptography, it is in principle possible to prevent repetition and reordering,
concretely by means of sequence numbers. But we do not cover this aspect of security
in this thesis.

6 For a slightly different modeling of the game-based notions and anonymous channel
resources.
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• n-ik-ind-cpa-secure pE constructs A-SECMn→1 from A-AUTCn→1 and
KEYKn↔1 (cf. Theorem 3.3.1):

[KEYKn↔1,A-AUTCn→1] p
πpE;n-ik-ind-cpa
===========⇒ A-SECMn→1,

(for appropriate n-protocol πpE).

• ik-ae-secure pAE constructs A-SECMn→1 from A-INSCn→1 and KEYKn↔1

(cf. Theorem 3.3.2):

[KEYKn↔1,A-INSCn→1] p
πpAE;n-ik-ae
========⇒ A-SECMn→1,

(for appropriate n-protocol πpAE).

Note that by the composition theorem (Theorem 2.4.4), the first two
statements imply the third for the (composed) protocol π̂pAE = πpE πpMAC,
namely

[KEYKn↔1,KEY
K
n↔1,A-INSCn→1] p

π̂pAE;n-ik-uf-cma,n-ik-ind-cpa
==================⇒ A-SECMn→1.

In particular, note that this corresponds to the EtM paradigm, and
therefore is a (composable) confirmation of Theorem 3.2.23.

3.3.3 Composable Anonymous Security of pE

In this section we first introduce a composable definition of anonymous
security for pE, and then we show that the previously introduced game-
based notion of ik-ind-cpa-security implies the former. The composable
definition can be interpreted as providing composable semantics to ik-ind-
cpa-security for pE, in the sense that the result we show here attests that
if an encryption scheme is ik-ind-cpa-secure, then it can be safely used to
construct a secure channel from an authenticated one, while preserving
anonymity.

In the following, for a fixed encryption scheme Π let the converter
enc (where the dependency on Π is implicit) behave as follows when
connected to interface Si of KEYKn↔1 and interface Si of A-AUTCn→1, for
i ∈ [n]: on input a message m ∈M from the outside, if not already done
so before, output ⋄ to KEYKn↔1 in order to fetch key ki, then compute
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c ← Encki
(m) ∈ C and output c to A-AUTCn→1. Also let the converter

dec (where again the dependency on Π is implicit) behave as follows
when connected to interface R of KEYKn↔1 and interface R of A-AUTCn→1:
on input ⋄ from the outside, if not already done so before, output ⋄ to
KEYKn↔1 in order to fetch keys k1, . . . , kn, and then output ⋄ to A-AUTCn→1;
for each obtained tuple (j, c, i), compute m← Decki(c), and output the
collection of all such resulting tuples (j,m, i) to the outside. Finally, we
define the n-protocol πpE

.
= (enc, . . . , enc, dec).

Theorem 3.3.1. [KEYKn↔1,A-AUTCn→1] p
πpE;n-ik-ind-cpa
===========⇒ A-SECMn→1.

Proof. Define7 transformation ρ as in Figure 3.6, system H0 as in Fig-
ure 3.7, and simulator σ attached to interface E of A-SECMn→1 that behaves
as follows: Initially, sample a key k1 according to Gen. Then:

• On input ⋄ from the outside, output ⋄ on the inside, obtain a set
O ⊆ N× N, and initialize another set O′ ⊆ N×M to ∅; Then for
each (j, ℓ) ∈ O, add (j, Enck1

(m̃)) to O′, for freshly and uniformly
sampled m̃ ∈M with |m̃| = |m|. Finally, output O′.

• On input j ∈ N from the outside, simply forward j to the inside.

Let k1, . . . , kn ← Gen. Then,

πpE [KEY
K
n↔1,A-AUTCn→1] ≡ H0 (monolithic representation)

≡ ρ([Ek1
, . . . ,Ekn

]) (correctness)
‌ ρ(Jρcpa(Ek1

), . . . , ρcpa(Ek1
)K) (n-ik-ind-cpa)

≡ σ A-SECMn→1. (monolithic representation)

Note that by combining Theorem 3.3.1 with Theorem 3.2.17, we also
have

[KEYKn↔1,A-AUTCn→1] p
πpE; ind$-cpa
=========⇒ A-SECMn→1.

7 For simplicity, here we consider the slightly different channel resources which on
input −1 at interface E do nothing (instead of adding the tuple (k,⊥,⊥), for some
k ∈ N, to the set R), since they would behave identically also otherwise.
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ρ(JX1, . . . ,XnK)

S,R ⊆ N×M× N
cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(m): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS ,m, i)}

Interface E(⋄):
O← {(j,Xi(m)) ∈ N× C | (j,m, i) ∈ S, cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(j):
if ∃m ∈M, i ∈ [n] : (j,m, i) ∈ S then

tR ← tR + 1
R← R ∪ {(tR,m, i)}

Interface R(⋄):
O← {(j,m, i) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 3.6: Transformation ρ for Theorem 3.3.1.
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H0

S,R ⊆ N× C × N
cS , cR, tS , tR ∈ N
k1, . . . , kn ∈ K
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0
k1, . . . , kn ← Gen

Interface Si(m): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS , Encki

(m), i)}
Interface E(⋄):

O← {(j, c) ∈ N× C | ∃i ∈ [n] : (j, c, i) ∈ S, cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(j):
if ∃c ∈ C, i ∈ [n] : (j, c, i) ∈ S then

tR ← tR + 1
R← R ∪ {(tR, c, i)}

Interface R(⋄):
O← {(j, Decki(c), i) ∈ N×M× [n] | (j, c, i) ∈ R, cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 3.7: Hybrid system H0 for Theorem 3.3.1.
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Comparison With Alwen et al. Note that in [AHM+15] this con-
struction step was already presented, but for a much less efficient (but
statistically secure) protocol: the idea is to double the number of sender
interfaces (two interfaces per user), and transmit messages bit-by-bit.
More concretely, assuming M = {0, 1}ℓ, for some ℓ ∈ N, this protocol
constructs A-SECMn→1 from A-AUTR×[ℓ]2n→1 (and, crucially, no KEYKn↔1 re-
source). It works by assigning to each outside interface Si, for i ∈ [n],
two interfaces Si,b of A-AUTR×[ℓ]2n→1, with b ∈ {0, 1}, and transmits each
message m = (m1, . . . ,mℓ) ∈ M as follows: First, sample some fresh
uniform randomness r ∈ R, for some randomness space R, and then,
for each j ∈ [ℓ], input (r, j) at interface Si,mj

of A-AUTR×[ℓ]2n→1. Then at
the receiver interface R, each message is reconstructed in the obvious
way: upon obtaining all of the ℓ triplets (·, (r, j), (i,mj)), output the
triplet (·, (m1, . . . ,mℓ), i) (where we are ignoring the counters, i.e., the
first arguments of the triplets). This protocol is intuitively secure because
for the adversary sitting at interface E, its view is independent of each
message m, and moreover it can only provoke the protocol to output an
invalid message at R if one of the senders reuses the same randomness
value r for two different messages, which can be avoided by introducing
state by the senders. Otherwise, assuming uniform distribution over R,
this anyway happens with very small probability, that is, by a standard
approximation for the birthday paradox bound, at most q2/|R|, where q
is the total of transmitted messages.

The above protocol is nevertheless clearly inefficient: Considering the
construction of A-AUTCn→1 using a MAC scheme, for each message of size
ℓ, the underlying MAC must be invoked ℓ times. Here we propose a much
more efficient construction by employing symmetric-key encryption, only
at the cost of doubling the size of the shared secret keys. The new protocol
is more efficient because now for every message only a single invocation
of both the MAC and the encryption scheme are required, independently
of its size.

3.3.4 Composable Anonymous Security of pAE

In this section we first introduce a composable definition of anonymous
security for pAE, and then we show that the previously introduced game-
based notion of ik-ae-security implies the former. The composable defini-
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tion can be interpreted as providing composable semantics to ik-ae-security
for pAE, in the sense that the result we show here attests that if an (au-
thenticated) encryption scheme is ik-ae-secure, then it can be safely used
to construct a secure channel from an insecure one, while preserving
anonymity.

In the following, for a fixed (authenticated) encryption scheme Π let
the converter aenc (where the dependency on Π is implicit) behave as
follows when connected to interface Si of KEYKn↔1 and interface Si of
A-INSCn→1, for i ∈ [n]: on input a message m ∈ M from the outside, if
not already done so before, output ⋄ to KEYKn↔1 in order to fetch key
ki, then compute c← Encki(m) ∈ C and output c to A-INSCn→1. Also let
the converter adec (where again the dependency on Π is implicit) behave
as follows when connected to interface R of KEYKn↔1 and interface R of
A-INSCn→1: on input ⋄ from the outside, if not already done so before,
output ⋄ to KEYKn↔1 in order to fetch keys k1, . . . , kn, and then output
⋄ to A-INSCn→1; for each obtained tuple (j, c), find the index i ∈ [n] such
that m ̸= ⊥, for m ← Decki(c), and output the collection of all such
resulting tuples (j,m, i) to the outside. Finally, we define the n-protocol
πpAE

.
= (aenc, . . . , aenc, adec).

Note that the scheme Π must satisfy a weak form of robustness, that
is: an honestly generated ciphertext c, for some message m and key ki,
when decrypted using kj , for j ̸= i, will result in ⊥. As shown in [FOR17],
ae$ security guarantees this property. In Appendix A.1 we will show how
our weaker 2-ik-ae also implies such notion of robustness.

Theorem 3.3.2. [KEYKn↔1,A-INSCn→1] p
πpAE;n-ik-ae
========⇒ A-SECMn→1.

Proof. Define transformation ρ as in Figure 3.8, system H0 as in Figure 3.9,
system H1 as in Figure 3.10, and simulator σ attached to interface E of
A-SECMn→1 that behaves as follows: Initially, sample a key k1 according
to Gen. Then:

• On input ⋄ from the outside, output ⋄ on the inside, obtain a set
O ⊆ N× N, and initialize another set O′ ⊆ N×M to ∅; Then for
each (j, ℓ) ∈ O, add (j, Enck1

(m̃)) to both O′ and T , for freshly and
uniformly sampled m̃ ∈M with |m̃| = |m|. Finally, output O′.

• On input c ∈ C from the outside, if there exists a j ∈ N such that
(j, c) ∈ T , then forward j to the inside.
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ρ(JJX1,Y1K, . . . , JXn,YnKK)

S,R ⊆ (N×M× N) ∪ (N× {⊥}2)
cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(m): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS ,m, i)}

Interface E(⋄):
O← {(j,Xi(m)) ∈ N× C | (j,m, i) ∈ S, cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(c):
tR ← tR + 1
if ∃i ∈ [n] : Yi(c) ̸= ⊥ then

R← R ∪ {(tR,Yi(c), i)}
else

R← R ∪ {(tR,⊥,⊥)}
Interface R(⋄):

O← {(j,m, i) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 3.8: Transformation ρ for Theorem 3.3.2.
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H0

S,R ⊆ N× C
cS , cR, tS , tR ∈ N
k1, . . . , kn ∈ K
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0
k1, . . . , kn ← Gen

Interface Si(m): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS , Encki

(m))}
Interface E(⋄):

O← {(j, c) ∈ S | cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(c):
tR ← tR + 1
R← R ∪ {(tR, c)}

Interface R(⋄):
O← {(j, Decki

(c), i) ∈ N×M× [n] | (j, c) ∈ R, cR ≤ j ≤ tR,
Decki

(c) ̸= ⊥} ∪ {(j,⊥,⊥) | ∃c ∈ C : (j, c) ∈ R, cR ≤ j ≤ tR,
∀i ∈ [n] : Decki(c) = ⊥}

cR ← tR + 1
return O

Figure 3.9: Hybrid system H0 for Theorem 3.3.2.
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H1

S,R ⊆ (N×M× N) ∪ (N× {⊥}2)
T ⊆ N× C
cS , cR, tS , tR ∈ N
k1 ∈ K
Initialize:

S,R,T← ∅
cS , cR ← 1
tS , tR ← 0
k1 ← Gen

Interface Si(m): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS ,m, i)}

Interface E(⋄):
m̃← {0, 1}|m|
O← {(j, Enck1

(m̃)) ∈ N× C | ∃i ∈ [n] : (j,m, i) ∈ S, cS ≤ j ≤ tS}
T← T ∪O
cS ← tS + 1
return O

Interface E(c):
tR ← tR + 1
if ∃j ∈ N : (j, c) ∈ T then

R← R ∪ {(tR,m, i) ∈ N×M× N | (j,m, i) ∈ S}
else

R← R ∪ {(tR,⊥,⊥)}
Interface R(⋄):

O← {(j,m, i) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 3.10: Hybrid system H1 for Theorem 3.3.2.
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Let k1, . . . , kn ← Gen. Then,

πpAE [KEY
K
n↔1,A-INSCn→1]

≡ H0 (monolithic representation)
≡ ρ([JEk1

,Dk1
K, . . . , JEkn

,Dkn
K]) (by inspection)

‌ ρ(Jρae(Ek1
), . . . , ρae(Ek1

)K) (n-ik-ae)
≡ H1 (correctness)

≡ σ A-SECMn→1. (monolithic representation)

Note that, analogously as for pE, by combining Theorem 3.3.2 with
Theorem 3.2.18, we also have

[KEYKn↔1,A-INSCn→1] p
πpAE; ae$
======⇒ A-SECMn→1.

Comparison With Alwen et al. Again, note that in [AHM+15, Theo-
rem 2] this direct construction step was already presented but the sug-
gested protocol is again much less efficient than ours. The idea improves
upon the previous one used to construct A-SECMn→1 from A-AUTR×[ℓ]n→1 ,
by using the randomness r ∈ R only once per message, and reducing
the domain of the underlying MAC scheme to |R| + log ℓ bits (where
again we are assuming M = {0, 1}ℓ). Detailedly, given a MAC with
message space M′ .

= R× {0, 1}log ℓ and tag space T , the protocol uses
[KEYKn↔1,KEY

K
n↔1,A-INSR×T

ℓ

n→1 ] in the following way: on input a message
m = (m1, . . . ,mℓ) ∈ M at the outside interface assigned to sender Si,
compute c

.
= (r, Tagki,m1

(r, 1), . . . , Tagki,mℓ
(r, ℓ)), where r is sampled uni-

formly at random over R, ki,0 is the key shared by Si and R through the
first KEYKn↔1 resource, and ki,1 is the key shared by Si and R through
the second KEYKn↔1 resource. Then at the receiver interface R, each
message is reconstructed by testing the value (r, τ1, . . . , τℓ) obtained by
A-INSR×T

ℓ

n→1 against each possible key-pair (ki,0, ki,1), for i ∈ [n], and
message (m1, . . . ,mℓ) ∈ {0, 1}ℓ: if for each j ∈ [ℓ] the tag τj is valid for
the (MAC) message (r, j) ∈ R× {0, 1}log ℓ under key ki,mj

, then output
(·, (m1, . . . ,mℓ), i)



3.3. COMPOSABLE SECURITY OF PE AND PAE 67

Note that the major drawbacks of this construction are (1) the fact
that even if the message space of the MAC has been reduced, this must
be invoked ℓ times for each message (as opposed to 1 time), and (2) the
fact that the time complexity of the receiver is O(nℓ) for each message
(as opposed to O(n)). Here we improve the efficiency of this construction
by employing authenticated encryption instead; therefore, this can be
seen as improving upon both the amount of invocations to the underlying
primitive (once per message—once MAC and once encryption, if the
scheme arises from the Encrypt-then-MAC paradigm—instead of ℓ), and
the time complexity associated to the receiving of each message: we only
need to test the received ciphertext against each possible of the n keys.
Moreover, our construction statement arguably feels more “natural” than
the one of [AHM+15].





Chapter 4

Anonymity Preservation:
Public-Key Primitives

4.1 Introduction

4.1.1 Motivation

When studying the security of public-key encryption (PKE) it is natural
to consider a setting with one sender and many receivers, each generating
its own key-pair and authentically transmitting the public key to the
sender. Then a reasonable concern is whether ciphertexts subsequently
generated by the sender for distinct receivers are (computationally) in-
distinguishable. This captures the intuitive notion of receiver anonymity
from the standpoint of an eavesdropper, and is formalized by the secu-
rity definition of key-indistinguishability, first proposed by Bellare et al.
[BBDP01]. Almost a decade later, Abdalla et al. [ABN10] introduced
another related notion for PKE, robustness, which intuitively captures
the fact that ciphertexts can only be meaningfully decrypted using the
correct corresponding private key, meaning that trying to decrypt with a
wrong key results in an error.

It turns out that this further property is crucially needed in conjunc-
tion with key-indistinguishability in order to provide a “usable” form
of anonymous PKE, and this has been highlighted by Kohlweiss et al.
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[KMO+13] by showing that both properties, together with IND-CCA
security, are needed in order for a PKE scheme to enhance an anonymous
insecure broadcast channel into an anonymous confidential broadcast chan-
nel. Importantly, their work also highlights how key-indistinguishability
is a security notion that exclusively preserves anonymity, rather than
“creating” it, whereas IND-CCA lifts insecurity to confidentiality, thus
“creating” more security along the secrecy axis.

On the other hand, for the security of digital signature schemes (DSS)
the natural setting to consider is the dual of the above: Many senders,
each authentically publishing their public verification key, send messages
to the same party, the receiver. Here too it is reasonable to consider
anonymity (preservation), of the sender in this case, from the standpoint
of an eavesdropper. But in this setting it is additionally also meaningful to
study the stronger notion of anonymity from the standpoint of the receiver,
that is, we might want the senders to remain anonymous not only towards
an external attacker (the eavesdropper), but towards the receiver as well.
We distinguish those two separate notions of anonymity in this setting
as external and internal, respectively, where clearly the latter implies the
former (but not vice versa). However, unlike for PKE, the situation is
arguably more intricate for DSS; in fact, providing external anonymity
alone already appears paradoxical: How can we guarantee (computational)
indistinguishability of signatures, when in the usual application of DSS it is
assumed that an eavesdropper has access to the corresponding message as
well as all possible verification keys, and could therefore easily distinguish
signatures generated with different keys by simply verifying the signature
on the message against all keys?

A direct consequence of this apparent dilemma is that for the setting
discussed above, the standard syntactic definition of a DSS cannot possibly
achieve any meaningful form of anonymity, as we prove later within our
framework. This is in fact the reason why in the cryptographic literature
there exist a multitude of different security notions capturing various
forms of anonymity in relation to syntactic modifications of the usual DSS
definition. A non-exhaustive list of examples includes: group signatures
[Cv91], ring signatures [RST01], anonymous signatures [YWDW06, Fis07,
ZI09], and partial signatures [BD09, SY09].

In this chapter we take an alternative approach in order to treat the
apparently oxymoronic problem of achieving anonymous authenticity:
Instead of creating new syntactic modifications of DSS and ad-hoc game-
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based security definitions thereof, we begin from a more abstract point of
view and identify possible applications where those two goals simultane-
ously come into play, and directly define security in a composable fashion,
using the framework of constructive cryptography of Maurer and Renner
[MR11, Mau12] introduced in Section 2.4, requiring that a protocol real-
izes such an application relying on the public-key infrastructure (PKI).
More precisely, we introduce three novel composable security notions for
generic protocols, and then present concrete protocols satisfying each
of those. The first protocol makes use of a novel cryptographic scheme,
dubbed bilateral signatures, while the other two employ partial signatures
and ring signatures, respectively.

4.1.2 Related Work

The goal of this chapter is to finish filling the blanks in the composable
treatment of anonymity preservation. To better understand what is
missing in this line of research, let us summarize the state of affairs. Recall
some typical resources used in constructive cryptography: the insecure
channel INS (which leaks everything the sender inputs to the adversary,
and allows the latter to send values to the receiver), the authenticated
channel AUT, the confidential channel CNF, and the secure (i.e., authentic
and confidential) channel SEC, all allowing to send multiple values. In
order to capture anonymity, we are interested in a setting where there are
multiple parties. More concretely, we consider resources with n senders
S1, . . . , Sn and one receiver R (for which we use the intuitive notation
n→1), and resources with one sender and n receivers (for which we use the
intuitive notation 1→n). If one considers the above channels, a natural
approach to extend them to this setting would be to simply compose
them in parallel, but this would imply that the leakage now includes the
identities of the sender Si or the receiver Ri, since the individual channels
are distinguishable by definition by the adversary. In the following table we
summarize the guarantees provided by resources combining such channels
(which we also denote as channels) in terms of what is leaked to the
adversary relative to a value x ∈ X , for some set X , input by a sender and
whether the adversary can inject values (such that the receiver can not
distinguish whether the value was sent by the sender S or the adversary
E).
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Channel Leaked Inject Channel Leaked Inject
INSXn→1 Si, x yes INSX1→n Ri, x yes
AUTXn→1 Si, x no AUTX1→n Ri, x no
CNFXn→1 Si, |x| yes CNFX1→n Ri, |x| yes
SECXn→1 Si, |x| no SECX1→n Ri, |x| no

It seems natural that truly anonymous versions of these channels, that
is, channels capturing sender and receiver anonymity, must not leak such
identities to the adversary. Therefore we enhance the above channels with
these guarantees (adding the prefix A- for anonymous), and summarize the
new channels in the following table (note that in A-AUTMn→1, A-CNFMn→1,
and A-SECMn→1, the receiver also obtains the identity Si of the sender,
along with the message m ∈M).

Channel Leaked Inject
Sender anon. Receiver anon.

A-INSXn→1 A-INSX1→n x yes
A-AUTXn→1 A-AUTX1→n x no
A-CNFXn→1 A-CNFX1→n |x| yes
A-SECXn→1 A-SECX1→n |x| no

Other (non-anonymous) resources that we need in this setting are:
KEYKn↔1, for some set of keys K, which provides each sender with a
(different) shared secret-key with the receiver; KEYK1↔n, which provides
each receiver with a shared secret-key with the sender (in both resources,
the adversary’s interface is inactive); 1-AUTPKn→1, for some set of public keys
PK, which provides each sender with a (different) single-use authenticated
channel to the receiver; 1-AUTPK1←n, which provides the receiver with n
(different) single-use authenticated channels, one to each of the senders.

We stress again that we are considering anonymity preservation, there-
fore in the following we summarize the previous results from the literature
in terms of constructions among the anonymous channels mentioned above
(plus shared secret keys and one-time authenticated channels). This means
that both real and ideal core resources are anonymous, and hence the
enhancement of security provided by a construction happens along a
different axis (namely confidentiality, authenticity, or both).
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• In the symmetric-key setting, two works provide sender anonymous
constructions, for messages setM, ciphertexts set C, and MAC tags
set T :

– In [AHM+15], Alwen et al. show that for a simple protocol
πpMAC based on key-indistinguishable and unforgeable proba-
bilistic MAC schemes,

[KEYKn↔1,A-INSM×Tn→1 ] p
πpMAC
=====⇒ A-AUTMn→1.

– As presented in Chapter 3, in [BM20] Banfi and Maurer show
that for a simple protocol πpE based on key-indistinguishable
and IND-CPA probabilistic encryption schemes,

[KEYKn↔1,A-AUTCn→1] p
πpE
===⇒ A-SECMn→1,

and for a simple protocol πpAE based on key-indistinguishable
and IND-CCA3 probabilistic authenticated encryption schemes,

[KEYKn↔1,A-INSCn→1] p
πpAE
====⇒ A-SECMn→1.

• In the public-key setting, Kohlweiss et al. [KMO+13] show that for
a simple protocol πPKE based on key-indistinguishable and robust
IND-CCA public-key encryption schemes,

[1-AUTPK1←n,A-INSC1→n] p
πPKE====⇒ A-CNFM1→n.

So far, no public-key constructions achieving sender anonymity were
given, and we fill precisely this gap here, stated as an open problem in
[KMO+13].

4.1.3 Contributions

Referring to the above discussion, it is natural to ask whether it is possible
to construct A-AUTMn→1 from 1-AUTPKn→1 and A-INSM×Sn→1 , for some set of
signatures S, using a protocol based on signature schemes achieving some
form of anonymity. But it is rather easy to see that for regular signature
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schemes, this is impossible. Using an intuitive notation, the first result
that we show is in fact that for any such protocol π,

[1-AUTPKn→1,A-INSM×Sn→1 ] Yp π==⇒ A-AUTMn→1, (4.1)

that is, no protocol that is attached exclusively to the resources 1-AUTPKn→1

and A-INSM×Sn→1 (composed in parallel), can construct A-AUTMn→1. We
prove this in Section 4.2.1.

The main goal of this chapter is to show how to get around this impos-
sibility result by rethinking what can actually be achieved in this setting.
We still did not discuss the guarantees of the receiver: In A-AUTXn→1,
while only the value x input by the sender Si is leaked to the adversary,
the receiver will see both x and the sender’s identity Si. Therefore, we
identify two natural ways in which we can modify this resource such
that we can then make meaningful statements. We see this systematic
approach as a further contribution of this chapter.

• We introduce the new resource de-anonymizable authenticated chan-
nel D-AUTXn→1, which is similar to A-AUTXn→1, except that it only
guarantees authenticity of a sender once it decides to give up its
anonymity. In more detail, a sender Si can send a value x, and both
the adversary and the receiver will only see x, but can decide at a
later point to leak its identity to both parties, and this capability
is not available to the adversary. This channel could be used for
example in an anonymous auction, where bids need to be anonymous
but the winner is required to later give up its anonymity in order to
(authentically) claim the winning bet.

• We also introduce the new ideal resource receiver-side anonymous
authenticated channel RA-AUTXn→1, which is similar to A-AUTXn→1,
except that the anonymity of the sender is guaranteed also towards
the receiver, not just the adversary. Therefore, RA-AUTXn→1 also
captures internal anonymity.

In the following table we summarize the guarantees provided by those
resources.
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Channel Leaked Inject Received
A-AUTXn→1 x no Si, x

D-AUTXn→1 x/(Si, x) x̃/(Sj , x̃) x/(Si, x)

RA-AUTXn→1 x no x

We can now summarize our contribution as providing constructions
that, compared to equation (4.1), (i) use a different set of assumed re-
sources, (ii) realize a different kind of ideal resource, or (iii) both. For (i)
we show that a new scheme that we introduce, bilateral signatures, can be
used to construct A-AUTMn→1 if we further assume a (single-use) authen-
ticated channel from the receiver to the senders, 1-AUTPKn←1. Informally,
we show that

[1-AUTPKn→1, 1-AUT
PK
n←1,A-INSM×Sn→1 ] p πBS===⇒ A-AUTMn→1,

which amounts to giving composable semantics to bilateral signatures.
For (ii) we show that D-AUTMn→1 can be constructed from the original set
of assumed resources from equation (4.1) using partial signatures from
[BD09, SY09]. Informally, we show that

[1-AUTPKn→1,A-INSM×Sn→1 ] p πPS===⇒ D-AUTMn→1,

which amounts to giving composable semantics to partial signatures.
Finally, for (iii) we show that RA-AUTMn→1 can be constructed using ring
signatures [RST01, BKM06] if instead of 1-AUTPKn→1, we assume a (single-
use) broadcast authenticated channel, 1-AUTPKn⟲1, which from each sender
authentically transmits a message to the receiver, as well as all other
senders. Informally, we show that

[1-AUTPKn⟲1,A-INSM×Sn→1 ] p πRS===⇒ RA-AUTMn→1,

which amounts to giving composable semantics to ring signatures.

4.1.4 Constructive Cryptography with Specifications
For the construction based on partial signatures, we will need an extended
version of constructive cryptography that defines statements via speci-
fications, rather than resources as introduced in Section 2.4. For this,
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we will loosely follow the work of Maurer and Renner [MR16], and later,
when presenting the construction itself in Section 4.4.2, we will further
incorporate newer concepts from the work of Jost and Maurer [JM20]. In
order to keep the presentation self-contained, we will only glance over the
necessary components of such extension of CC.

Roughly speaking, a specification is a set of resources. Another im-
portant concept, is that of a relaxation, which can be seen as a way to
map a single resource to a specification. Within our formalism of CC
based on substitutions, the most fundamental relaxation is the so-called
substitution-relaxation.1 For a resource R and a substitution s, it is defined
as

Rs .
= {S | s =⇒ S ‌ R}.

The set Rs can be understood as the set of all resources that are s-close
to R, that is, all resources where applying the substitution s (wherever
possible), yields R. More precisely, assuming s is defined as X0 ‌ X1, for
some systems X0,X1, Rs is comprised of all resources S for which there
exist an (efficient) transformation ρS such that S ≡ ρS(X0) ‌ ρS(X1) ≡ R.
Since specifications themselves can be relaxed, for a specification S, we
further have

Ss .
=

⋃
R∈S

Rs = {S | ∃R ∈ S : s =⇒ S ‌ R}.

This allows for an alternative definition of the construction statement
from Definition 2.4.3: Given two resources REAL and IDEAL, a substitution
s, we can say that a protocol π constructs IDEAL from REAL assuming s
if there exists a simulator σ such that

π REAL ∈ (σ IDEAL)s. (4.2)

Note that by understanding single resources as singleton specifications,
we can replace ∈ by ⊆, and therefore composition trivially follows by the
transitivity of the subset relation (see [MR16] for more details.)

4.2 Anonymous and Authenticated Resources
In this section we present the n-resources that we need later in order
to make our security statements. Instead of bold-face letters, for such

1 In [MR16], this corresponds to the ε-relaxation.
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resources we will use suggestive sans-serif abbreviations. We describe
all resources first on an intuitive level, and then formally following the
model introduced in [BM20] and already used in Chapter 3, in which
communication is modeled by a sender buffer S and a receiver buffer R,
both allowing to insert single elements and to read in chunks. Note that
all our resources are parameterized by an arbitrary set X , but we will
make the instantiation of such set implicit when showing constructions.

We begin by describing the three single-use authenticated channels
needed as assumed resources in order to authentically exchange public
keys. The first such resource is 1-AUTXn→1, which allows to input a value
once at every sender interface Si, for i ∈ [n], and allows to read these
values at the receiver and adversary interfaces, R and E, respectively.
Based on this resource, we then simply define 1-AUTXn←1 as somewhat
the dual of this, namely, the resource that allows to input a value once at
the receiver interface R, and that allows to read this value at every sender
and adversary interface, Si, for i ∈ [n], and E, respectively. Finally, we
also need the resource 1-AUTXn⟲1, which similarly to 1-AUTXn→1 allows to
input a value once at every sender interface Si, for i ∈ [n], but additionally
allows to read these values at all the sender interfaces Si as well. We
formally describe these three resources in Figure 4.1. We tacitly assume
that protocols first use those resources to exchange public-keys, and only
once all keys have been exchanged, they use the channel resources. We
also point out that our results are in a model in which public keys are
therefore assumed to always be honestly generated. We leave open the
problem of strengthening the model by replacing these resources by a
certificate authority, which would allow the adversary to also register keys.

We next describe the assumed channel resource A-INSXn→1 as well as the
three different ideal anonymous channel resources A-AUTXn→1, D-AUTXn→1,
and RA-AUTXn→1 (all depicted in Figure 4.2).

• The anonymous insecure channel A-INSXn→1, formalized in Figure 4.3.
allows to input multiple values at every sender interface Si, for i ∈ [n].
Those values are stored in the sender buffer S, from which they can
be read at the adversary interface E. Moreover, at this interface
A-INSXn→1 also allows the adversary to inject multiple arbitrary
values. Those values are stored in the receiver buffer R, from which
they can be read at the receiver interface R.

• In the anonymous authenticated channel A-AUTXn→1, formalized in
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1-AUTXn→1

x1, . . . , xn ∈ X ∪ {⊥}
Initialize:

x1, . . . , xn ← ⊥
Interface Si(ξ ∈ X ): // i ∈ [n]

xi ← ξ

Interface E(⋄):
O← {(i, xi) | i ∈ [n]}
return O

Interface R(⋄):
O← {(i, xi) | i ∈ [n]}
return O

1-AUTXn←1

x ∈ X ∪ {⊥}
Initialize:

x← ⊥
Interface Si(⋄): // i ∈ [n]

return x

Interface E(⋄):
return x

Interface R(ξ ∈ X ):
x← ξ

1-AUTXn⟲1

x1, . . . , xn ∈ X ∪ {⊥}
Initialize:

x1, . . . , xn ← ⊥
Interface Si(ξ ∈ X ): // i ∈ [n]

xi ← ξ

Interface Si(⋄): // i ∈ [n]
O← {(i, xi) | i ∈ [n]}
return O

Interface E(⋄):
O← {(i, xi) | i ∈ [n]}
return O

Interface R(⋄):
O← {(i, xi) | i ∈ [n]}
return O

Figure 4.1: Formal description of the single use authenticated channels
1-AUTXn→1, 1-AUT

X
n←1, and 1-AUTXn⟲1.
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Figure 4.2: Sketches of the anonymous channel resources for n = 2
senders (S1 sending m1 and S2 sending m2). For D-AUTX2→1, only S1

de-anonymizes its message (in green).

Figure 4.4, the sender buffer S is used exactly as in A-INSXn→1,
except that for every value sent, information about the sender is
also stored, but not leaked to the adversary. Unlike A-INSXn→1,
at the interface E, A-AUTXn→1 only allows the adversary to select
which values previously input by a sender will be transmitted to the
receiver. Those values, along with the sender information, will be
transferred from the sender buffer S to the receiver buffer R, from
which they can be read at the receiver interface R.

• The de-anonymizable authenticated channel D-AUTXn→1, formalized
in Figure 4.5, allows to input two type of values at every sender
interface Si, for i ∈ [n]: one to commit a value x ∈ X , (cmt, x),
and the other to authenticate a previously committed value x′ ∈ X ,
(aut, hx′), where hx′ is a handle for x′ generated by D-AUTXn→1.
Those values are stored in the sender buffer S, from which they can
be read at the adversary interface E. Information about the sender
is also stored, but is only leaked to the adversary along with aut
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values. At the interface E, D-AUTXn→1 allows the adversary to select
which values (of both types) previously input by a sender will be
transmitted to the receiver, as well as to inject additional cmt values.
Those values, including sender information only in case of aut values,
will be transferred from the sender buffer S to the receiver buffer
R, from which they can be read at the receiver interface R.

• The receiver-side anonymous authenticated channel RA-AUTXn→1,
formalized in Figure 4.6, works exactly as A-AUTXn→1, except that
sender information is concealed from the receiver as well (and there-
fore never stored in the buffers S and R).

4.2.1 No Anonymity Preservation from DSS
In this section we briefly formalize the simple intuition that regular digital
signature schemes (DSS) do not preserve anonymity. We do so in a more
generic and composable way: What we prove is that actually no protocol
can enhance an insecure channel to an authentic one while preserving its
anonymity by only having public one-time authentic information flowing
from the receivers to the sender. Clearly, using DSS in the usual way is
just one of the possible such protocols.

Proposition 4.2.1. For any protocol π, any simulator σ, and any
ε < 1− 1

n ,

π [1-AUTPKn→1,A-INSM×Sn→1 ] ̸≈ε σ A-AUTMn→1.

Proof. Let π be any n-protocol and σ any simulator. Recall the definition
of distinguishing advantage from Section 2.3.3. We prove the statement
concretely by showing that there is a distinguisher D such that

∆D(π [1-AUTPKn→1,A-INSM×Sn→1 ],σ A-AUTMn→1) ≥ 1− 1

n
,

which is sufficient to prove the claim. D works as follows. First, it chooses
a random message m $←M and a random index i $← [n], and inputs m
at interface Si. Then it inputs ⋄ at interface E of (possibly emulated)
A-INSM×Sn→1 , and obtains2 (0,m, σ). It subsequently inputs i at interface

2 Note that we are assuming (w.l.o.g.) that π always transmits m.
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A-INSXn→1

S,R ⊆ N×X
cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(x ∈ X ): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS , x)}

Interface E(⋄):
O← {(j, x) ∈ S | cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(x ∈ X ):
tR ← tR + 1
R← R ∪ {(tR, x)}

Interface R(⋄):
O← {(j, x) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 4.3: Formal description of the insecure anonymous channel
A-INSXn→1.
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A-AUTXn→1

S,R ⊆ (N×X × N) ∪ (N× {⊥}2)
cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(x ∈ X ): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS , x, i)}

Interface E(⋄):
O← {(j, x) ∈ N×X | ∃ i ∈ [n] : (j, x, i) ∈ S, cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(j ∈ N):
if ∃x ∈ X , i ∈ [n] : (j, x, i) ∈ S then

tR ← tR + 1
R← R ∪ {(tR, x, i)}

Interface R(⋄):
O← {(j, x, i) ∈ R | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 4.4: Formal description of the anonymous authenticated channel
A-AUTXn→1.
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D-AUTXn→1

S ⊆ ({cmt} × N×X × [n]× N) ∪ ({aut} × N2 ×X × [n])
R ⊆ ({cmt} × N×X ) ∪ ({aut} × N2 × [n]); L ⊆ N2

cS , cR, tS , tR, h1, . . . , hn ∈ N
Initialize:

S,R,L← ∅; cS , cR ← 1; tS , tR, h1, . . . , hn ← 0

Interface Si(cmt, x ∈ X ): // i ∈ [n]
tS ← tS + 1; hi ← hi + 1; S← S ∪ {(cmt, tS , x, i, hi)}
return hi

Interface Si(aut, h ∈ N): // i ∈ [n]
if ∃ j ∈ N, x ∈ X : (cmt, j, x, i, h) ∈ S then

tS ← tS + 1; S← S ∪ {(aut, tS , j, x, i)}
Interface E(⋄):

O← {(cmt, j ∈ N, x ∈ X ) | ∃ i ∈ [n], h ∈ N : (cmt, j, x, i, h) ∈ S,
cS ≤ j ≤ tS} ∪ {(aut, j, j′, x, i) ∈ S | cS ≤ j ≤ tS}

cS ← tS + 1
return O

Interface E(j ∈ N):
if ∃x ∈ X , i ∈ [n], h ∈ N : (cmt, j, x, i, h) ∈ S then

tR ← tR + 1; R← R ∪ {(cmt, tR, x)}; L← L ∪ {(j, tR)}
else if ∃ j′ ∈ N, x ∈ X , i ∈ [n] : (aut, j, j′, x, i) ∈ S then

if ∃ j′′ ∈ N : (j′, j′′) ∈ L then
tR ← tR + 1; R← R ∪ {(aut, tR, j′′, i)}

Interface E(cmt, x ∈ X ):
tR ← tR + 1; R← R ∪ {(cmt, tR, x)}

Interface R(⋄):
O← {(cmt, j, x), (aut, j, j′, i) ∈ R | cR ≤ j ≤ tR}; cR ← tR + 1
return O

Figure 4.5: Formal description of the de-anonymizable authenticated
channel D-AUTXn→1.
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RA-AUTXn→1

S,R ⊆ (N×X ) ∪ (N× {⊥})
cS , cR, tS , tR ∈ N
Initialize:

S,R← ∅
cS , cR ← 1
tS , tR ← 0

Interface Si(x ∈ X ): // i ∈ [n]
tS ← tS + 1
S← S ∪ {(tS , x)}

Interface E(⋄):
O← {(j, x) ∈ S | cS ≤ j ≤ tS}
cS ← tS + 1
return O

Interface E(j ∈ N):
if ∃x ∈ X : (j, x) ∈ S then

tR ← tR + 1
R← R ∪ {(tR, x)}

Interface R(⋄):
O← {(j, x) ∈ S | cR ≤ j ≤ tR}
cR ← tR + 1
return O

Figure 4.6: Formal description of the receiver-side anonymous authenti-
cated channel RA-AUTXn→1.
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E of (possibly emulated) 1-AUTPKn→1, obtains (possibly emulated) public
one-time authentic value pki, and then emulates the (fixed and publicly
known) protocol π on input pki and (m,σ) at interface R. Finally, D
outputs 0 if and only if it obtains (m, i) from its emulation. We now
analyze two cases. First, assume that D is interacting with the real-world
resource π [1-AUTPKn→1,A-INSM×Sn→1 ]. Then by the correctness of π, D will
obtain (m, i) with probability 1 from its emulation. On the other hand,
if D is interacting with the ideal-resource σ A-AUTMn→1 instead, then D
will obtain (m, i) with probability at most 1

n from its emulation. This is
because σ has no better choice than to actually emulate π as well, and
choose at random one of the n public one-time authentic values from
emulated A-AUTMn→1 to generate σ (since it does not obtain the index
of the sender from A-AUTMn→1). Therefore, D’s advantage is at least
1− 1

n .

4.3 Anonymous Authenticity
We start by introducing a new flavor of a signature scheme with some
anonymity property, dubbed bilateral signatures. This scheme shares the
syntax of designated verifier signatures (DVS): both sender and receiver
have a key-pair; signing a message requires the secret key of the sender and
the public key of the receiver, and verifying a signature requires the secret
key of the receiver and the public key of the sender. The receiver’s key-
pair is essentially what allows to circumvent the impossibility result from
Section 4.2.1, by introducing one-time authenticated information from
the receiver to the senders: it enables indistinguishability of signatures by
making verification exclusive to the receiver, as opposed to public.

Definition 4.3.1 (Bilateral Signature Scheme). A bilateral signature
scheme (BSS) ΣBS

.
= (GenS , GenR, Sgn, Vrf) over message-spaceM and

signature-space S (with ⊥ /∈M∪ S), is such that

• GenS is a distribution over the sender key-spaces SKS × PKS ;

• GenR is a distribution over the receiver key-spaces SKR × PKR;

• Sgn : SKS × PKR ×M→ S is a probabilistic function;

• Vrf : SKR × PKS ×M×S → {0, 1} is a deterministic function.
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We require the above to be efficiently samplable/computable. For sender
key-pair (ssk, spk) ∈ SKS×PKS and receiver key-pair (rsk, rpk) ∈ SKR×
PKR we use the short-hand notation Sgnssk,rpk(·) for Sgn(ssk, rpk, ·) and
Vrfrsk,spk(·, ·) for Vrf(rsk, spk, ·, ·). Moreover, we assume correctness of
ΣBS, that is, for all key-pairs (ssk, spk) and (rsk, rpk) distributed according
to GenS and GenR, respectively, all messages m ∈M, and all signatures
σ ∈ S,

Vrfrsk,spk(m,σ) = 1
{
σ ∈ supp (Sgnssk,rpk(m))

}
.

Note that we only introduce bilateral signatures as an abstract syn-
tactic object. As we discuss in Section 4.3.3, there exist concrete schemes
satisfying such syntax, as well as the semantics we define later. Nev-
ertheless, such schemes provide additional security guarantees that are
not required in our setting. We leave the problem of finding a bilateral
signature scheme which is minimal.

4.3.1 Game-Based Security of Bilateral Signatures
We begin our study of the semantics of bilateral signatures by defining their
game-base security. In order to define the security of a fixed scheme ΣBS,
we define the following systems (where the dependency on ΣBS is implicit),
parameterized by keys (ssk, spk) ∈ SKS ×PKS , spk .

= (spk1, . . . , spkn) ∈
PKn

S , for any n ∈ N, and (rsk, rpk) ∈ SKR × PKR.

• Sssk,rpk: On input m ∈M, get σ ← Sgnssk,rpk(m) and output σ.

• Vrsk,spk: On input (m,σ) ∈ M× S, get b := Vrfrsk,spk(m,σ) and
output b.

• ρuf(X) ≡ JX′,Y′K, for some correlated systems X′ and Y′ that
behave as follows: Initially set Q ⊆M×S to ∅, and then:

– On input m ∈M to X′, forward m to X, obtain σ ∈ S, set Q
to Q∪ {(m,σ)}, and output σ.

– On input (m,σ) ∈M×S to Y′, output 1 if (m,σ) ∈ Q and 0
otherwise.

• ρn-ik(JX,YK) ≡ JJX′1,Y′1K, . . . , JX′n,Y′nKK, for some correlated sys-
tems X′1,Y

′
1, . . . ,X

′
n,Y

′
n that behave as follows: Set Qi ⊆M×S

to ∅, for each i ∈ [n], and then:
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– On input m ∈ M to X′i, forward m to X, obtain σ ∈ S, set
Qi to Qi ∪ {(m,σ)}, and output σ.

– On input (m,σ) ∈ M × S to Y′i, if (m,σ) ∈ Qj , for some
j ∈ [n]∖ {i}, output 0, otherwise forward (m,σ) to Y, obtain
b ∈ {0, 1}, and output b.

In our definitions, all keys will always be random variables distributed
(as key-pairs) according to ΣBS’s GenS and GenR.

We begin by defining authenticity of bilateral signatures. For this,
we define a distinguishing problem between a real system that correctly
generates and verifies signatures, via a signing oracle for one sender and
a verification oracle for one receiver, and an ideal system that correctly
generates signatures, but only correctly verifies signatures previously
output by the signing oracle.

Definition 4.3.2 (uf-bs).

JJSssk,rpk,Vrsk,spkK, spk, rpk K ‌ Jρuf(Sssk,rpk), spk, rpk K,

for (ssk, spk)← GenS and (rsk, rpk)← GenR.

Note that usually when authenticity is interpreted as unforgeability,
as we do here, the related security notion is defined as a game where an
adversary must first interact with a system implementing some oracles,
and eventually attempt to come up with a concrete forgery. Nevertheless,
defining unforgeability (hence, authenticity) through a distinguishing
problem is not uncommon (see [Ros21] for example). The latter suits us
better because it more directly relates to composable notions of security,
and moreover it can be easily shown that it is implied by the former:
as opposed to the real system, valid forgeries in the ideal system are
falsely reported to be incorrect, thus trivially allowing to distinguish (see
Section 2.3.4 for a more detailed discussion)

We next define anonymity of bilateral signatures. For this, we define
a distinguishing problem between a real system that correctly generates
and verifies signatures, via signing and verification oracles for n (different)
senders and one receiver, and an ideal system that also correctly generates
and verifies signatures, but via n copies of signing and verification oracles
for the same sender and one receiver. The ideal system is also such that
if a signature obtained from the i-th signing oracle is input to the j-th
verification oracle, for j ̸= i, then 0 is output.
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Definition 4.3.3 (n-ik-bs).

JJSssk1,rpk,Vrsk,spk1K, . . . , JSsskn,rpk,Vrsk,spknK, spk, rpk K
‌

Jρn-ik(JSssk1,rpk,Vrsk,spk1K), spk, rpk K,

for independent (ssk1, spk1), . . . , (sskn, spkn)← GenS , (rsk, rpk)← GenR,
and spk

.
= (spk1, . . . , spkn).

Finally, we define a combined notion for bilateral signatures capturing
both authenticity and anonymity at once. For this, we define a distinguish-
ing problem between a real system that correctly generates and verifies
signatures, via signing and verification oracles for n (different) senders and
one receiver, and an ideal system that also correctly generates signatures
and only correctly verifies signatures previously signed, but via n copies
of signing and verification oracles for the same sender and one receiver.

Definition 4.3.4 (n-ik-uf-bs).

JJSssk1,rpk,Vrsk,spk1K, . . . , JSsskn,rpk,Vrsk,spknK, spk, rpk K
‌

Jρn-ik ◦ ρuf(Sssk1,rpk), spk, rpk K

for independent (ssk1, spk1), . . . , (sskn, spkn)← GenS , (rsk, rpk)← GenR,
and spk

.
= (spk1, . . . , spkn).

We now show that, as expected, uf-bs and n-ik-bs imply n-ik-uf-bs.

Lemma 4.3.5. (uf-bs, n-ik-bs)
1,1−−−→ n-ik-uf-bs.

Proof. Let (ssk1, spk1), . . . , (sskn, spkn) ← GenS , (rsk, rpk) ← GenR,
spk

.
= (spk1, . . . , spkn), and consider

ρ(JX, x, yK) .
= Jρn-ik(X), spk′, yK,
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where spk′
.
= (x, spk2, . . . , spkn). Then:

JJSssk1,rpk,Vrsk,spk1K, . . . , JSsskn,rpk,Vrsk,spknK, spk, rpk K

‌ Jρn-ik(JSssk1,rpk,Vrsk,spk1K), spk, rpk K (n-ik-bs)
= ρ(JJSssk1,rpk,Vrsk,spk1K, spk1, rpk K)

‌ ρ(Jρuf(Sssk1,rpk), spk1, rpk K) (uf-bs)

= Jρn-ik ◦ ρuf(Sssk1,rpk), spk, rpk K.

4.3.2 Composable Security of Bilateral Signatures

We continue our study of the semantics of bilateral signatures by defining
their composable security in the constructive cryptography framework.
Recall that we want to define composable security of a bilateral signature
scheme ΣBS as the construction of the resource A-AUTMn→1 from the
resources 1-AUTPKS

n→1 , 1-AUT
PKR
n←1 , and A-INSM×Sn→1 . In order to make this

statement formal, we need to define how a protocol πBS, attached to
the resource [1-AUTPKS

n→1 , 1-AUT
PKR
n←1 ,A-INSM×Sn→1 ], naturally makes use of

ΣBS. First, πBS runs GenS for every sender Si, for i ∈ [n], generating
key-pairs (ssk1, spk1), . . . , (sskn, spkn), as well as GenR for the receiver R,
generating the key-pair (rsk, rpk). Then it transmits the sender public
keys spk1, . . . , spkn to the receiver through 1-AUTPKS

n→1 and the receiver
public key rpk to each of the senders through 1-AUTPKR

n←1 . After that, once
a sender Si inputs a message m on its interface, πBS uses sski and rpk
to generate σ ← Sgnsski,rpk(m), and inputs (m,σ) to the interface Si of
A-INSM×Sn→1 . Once the receiver R inputs ⋄ on its interface, πBS also inputs
⋄ to the interface R of A-INSM×Sn→1 , obtaining a set O ⊆ N×M×S, and
outputs the set {(j,m, i) | ∃ (j,m, σ) ∈ O, i ∈ [n] : Vrfrsk,spki(m,σ) = 1}
to R. We call πBS the protocol using ΣBS in the natural way. We can
now show that game-based security of bilateral signatures implies their
composable security.

Theorem 4.3.6.

[1-AUTPKS
n→1 , 1-AUT

PKR
n←1 ,A-INSM×Sn→1 ] p πBS;n-ik-uf-bs

=========⇒ A-AUTMn→1.
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Proof. Let define systems

X
.
= JJSssk1,rpk,Vrsk,spk1K, . . . , JSsskn,rpk,Vrsk,spknK, spk, rpk K,

Y
.
= Jρn-ik ◦ ρuf(Sssk1,rpk), spk, rpk K,

for independent (ssk1, spk1), . . . , (sskn, spkn) ← GenS and (rsk, rpk) ←
GenR. We now need to provide a simulator σ and a transformation ρ such
that

ρ(X) ≡ πBS [1-AUTPKS
n→1 , 1-AUT

PKR
n←1 ,A-INSM×Sn→1 ],

ρ(Y) ≡ σ A-AUTMn→1.

The simulator σ first sets Q ← ∅. Then it generates n sender key-
pairs (ssk1, spk1), . . . , (sskn, spkn)← GenS as well as one receiver key-pair
(rsk, rpk)← GenR, and on input ⋄ to the interfaces E emulating 1-AUTPKS

n→1

and 1-AUTPKR
n←1 , σ outputs {(i, spki) | i ∈ [n]} and rpk, respectively, at

the same interface. Whenever ⋄ is input to the interfaces E emulating
A-INSM×Sn→1 , σ also inputs ⋄ to the interface E of A-AUTMn→1, obtaining a
set O ⊆ N×M. It then outputs the set {(j,m, Sgnssk1,rpk(m)) | ∃ (j,m) ∈
O} to E, and sets Q ← Q∪O. Whenever (m,σ) is input to the interface
E emulating A-INSM×Sn→1 , if (j,m, σ) ∈ Q for some j ∈ N, then σ inputs j
to the E interface of A-AUTMn→1.

The transformation ρ(JJX1,Y1K, . . . , JXn,YnK,x, yK) simply works by
emulating πBS[1-AUTPKS

n→1 , 1-AUT
PKR
n←1 ,A-INSM×Sn→1 ], but replacing any calls

to GenR, GenS by the appropriate value from x, y, any call to Sgnsski,rpk
by a call to Xi, and any call to Vrfrsk,spki by a call to Yi.

4.3.3 Relations with Previous Notions and Schemes
As we pointed out earlier, bilateral signatures share the same syntax
of designated verifier signatures (DVS). This does not mean that, as a
cryptographic scheme, they are the same. In fact, what matters are also
the semantics of such scheme, that is, how its security is defined. On a
high level, for DVS (game-based) security corresponds to being unable to
tell whether a signature was produced by the sender or by the receiver,
and therefore anonymity in not necessarily guaranteed among signatures
generated by different senders. Instead, for bilateral signatures, the latter
property is exactly what defines security, in terms of anonymity. Moreover,



4.3. ANONYMOUS AUTHENTICITY 91

the characterizing feature of DVS is irrelevant: For bilateral signatures, we
do not want to (necessarily) hide the role of the sender, or respectively of
the receiver; a bilateral signature scheme in principle allows an adversary
to tell that the signature was generated by one of the senders, and in
particular, not by the receiver, and therefore such a scheme would not be
a secure DVS. Recently, in [MPR21] this characterizing feature of DVS
that hides both the sender and the receivers has been modeled composably,
where guarantees are provided not only to honest parties, but also to
dishonest ones.

Nevertheless, in [JSI96], where DVS were originally introduced, the
concept of strong DVS was mentioned, requiring a DVS scheme to ad-
ditionally provide indistinguishably of signatures produced by different
senders (the same property capturing anonymity of bilateral signatures).
This notion was later formalized in [LV05], and it was shown how to
enhance any DVS scheme to additionally satisfy this stronger notion,
dubbed PSI-CMA-security. Clearly, such a DVS scheme would also be a
bilateral signature scheme, albeit not minimal, in the sense that it would
provide additional unnecessary security guarantees.

We now informally argue that the concrete scheme DVSBMH from
[LV05] achieves our composable notion for bilateral signatures, that is,
it constructs A-AUTMn→1 from [1-AUTPKS

n→1 , 1-AUT
PKR
n←1 ,A-INSM×Sn→1 ] when

used in the natural way. To do so, it suffices to relate the notions DVSBMH
has been shown to satisfy to our game-based notions of uf-security and
ik-security; then Lemma 4.3.5 implies that DVSBMH is also uf-ik-secure,
and by Theorem 4.3.6 it is therefore also composably secure, as per
Theorem 4.3.6. Note that, syntactically, DVSBMH is actually a universal
DVS (UDVS) scheme, that is, a regular signature scheme equipped with
additional functions emulating those of a DVS scheme. Therefore, using
DVSBMH in the natural way means in particular to first produce a
signature with the base signing function, and then feeding it along with the
message and the receiver’s public key to a further “designation” function,
which will produce the final signature to be transmitted.

Unforgeability. In [LV05] DVSBMH has been shown to be st-dv-uf-
secure, a notion introduced in [SWP04] which is a stronger version of the
earlier notion of dv-uf-security from [SBWP03]. The former is stronger
in the sense that, unlike the latter, it provides the attacker access to
the verification oracle (in addition to a signing one), and therefore it
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directly relates to our uf-security notion for bilateral signatures from
Definition 4.3.2.

Anonymity. In [LV05] DVSBMH has been shown to be psi-cma-secure,
a notion introduced there and that also relates to our counterpart for
bilateral signatures, ik-security from Definition 4.3.3, but less directly. This
is because psi-cma-security is essentially defined as key-indistinguishability
of signatures, but only for two senders and one receiver, and therefore
the ik-security of DVSBMH incurs a loss of multiplicative factor (n− 1),
which can be shown via a standard hybrid argument.

4.4 De-Anonymizable Authenticity
In the previous section we studied a way to achieve the anonymous resource
A-AUTXn→1, at the cost of assuming additional one-time authenticated
information from the receiver to all senders. In this section we tackle
what can be interpreted as the dual problem, that is, we study what can
at most be achieved by only assuming one-time authenticated information
from the receivers to the sender (in addition to an insecure channel).
Considering to our impossibility result from Section 4.2.1, we know that
the constructed resource will be necessarily weaker than A-AUTXn→1.

Considering the constraint on the assumed resources, intuitively we
need a scheme that, on the sender side, requires the same input as regular
signatures, that is, just a secret key and a message. But since anonymity
is unachievable if both the message and the signature are disclosed, one
either needs to relax the security definition of digital signatures, or to
slightly change their syntax.

A first workaround to this impossibility was initially studied by Yang
et al. [YWDW06], and subsequently refined independently by Fischlin
[Fis07] and Zhang and Imai [ZI09], where the first approach is taken and
essentially the anonymity of the signature alone is considered. Modeling
such a security definition composably, makes it apparent how, from an
application point of view, this approach is moot: it requires to assume that
an adversary only sees signatures in transit, but not messages. Clearly, a
different kind of assumed resources is needed; ideally, the message should
be transmitted over a confidential channel. Composably, this hints to the
fact that anonymous signatures might only be appropriate in a context
where one wants to combine signatures with public-key encryption. This
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can be interpreted as the study of anonymity preservation of signcryption,
and we briefly discuss this in Section 4.6.

A different workaround, following the second approach, was indepen-
dently taken later by Saraswat and Yun [SY09] and by Bellare and Duan
[BD09]. There, the syntax of regular DSS was slightly modified to allow
the signature to bear some form of anonymity. More precisely, the security
definitions are changed to capture anonymity when the message and only
a portion of the signature are disclosed, and authenticity only once the
full signature is disclosed. We remark that the two works essentially
introduce the same syntax and security notions, but [SY09] uses the term
anonymous signatures introduced earlier in [YWDW06], whereas [BD09]
adopts the new term partial signatures, which we will adopt here as well.
More precisely, in such a scheme the signing function returns a signature
that is defined as a tuple (σ, τ), where σ is called the stub, τ the tag, and
(σ, τ) the full signature. Then the stub σ alone guarantees anonymity of
the sender on a message m (but not its authenticity), whereas authentic-
ity of m (but not anonymity anymore) is guaranteed once the tag τ is
subsequently disclosed.

Definition 4.4.1 (Partial Signature Scheme). A partial signature scheme
(PSS) ΣPS

.
= (Gen, Sgn, Vrf) over message-space M, stub-space S, and

tag-space T (with ⊥ /∈M∪ S ∪ T ), is such that

• Gen is a distribution over the key-spaces SK × PK;

• Sgn : SK ×M→ S × T is a probabilistic function;

• Vrf : PK ×M×S × T → {0, 1} is a deterministic function.

We require the above to be efficiently samplable/computable. For key-pair
(sk, pk) ∈ SK × PK we use the short-hand notation Sgnsk(·) for Sgn(sk, ·)
and Vrfpk(·, ·, ·) for Vrf(pk, ·, ·, ·). Moreover, we assume correctness of
ΣPS, that is, for all key-pairs (sk, pk) distributed according to Gen, all
messages m ∈M, and all signatures (σ, τ) ∈ S × T ,

Vrfpk(m,σ, τ) = 1{(σ, τ) ∈ supp (Sgnsk(m))}.

4.4.1 Game-Based Security of Partial Signatures
We begin our study of the semantics of partial signatures by defining their
game-base security. Originally, in [YWDW06] anonymous signatures (the
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precursors of partial signatures), were only defined to be unforgeable and
anonymous, by requiring that no adversary can forge valid signatures
and distinguish signatures when messages are withheld, respectively. In
[SY09] and [BD09], for the succeeding partial signatures, the unforgeability
notion is essentially unchanged, whereas anonymity is defined with a
game where the adversary sees only a part of the signatures, but also
the whole associated messages. Additionally, both works realize that a
crucial third security guarantee is also necessary: unambiguouity (named
unpretendability in [SY09]). This notion ensures that only the original
creator of a signature is able to later show that it indeed generated it.
This security guarantee is modeled via a game where an adversary tries
to come up with two messages m0,m1, a stub σ, and two tags τ0, τ1, such
that Vrfpk0(m0, σ, τ0) = Vrfpk1(m1, σ, τ1) = 1, for two different public
keys pk0, pk1, which in our setting must be two of the n known (and fixed)
sender public keys. In Section 4.4.3 we relate those notions from the
literature to the new definitions we introduce next.

In order to define the security of a fixed scheme ΣPS, we define the fol-
lowing systems (where the dependency on ΣPS is implicit), parameterized
by keys sk ∈ SK, pk ∈ PK, pk .

= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N.

• Ssk: On input m ∈M, get (σ, τ)← Sgnsk(m) and output (σ, τ).

• S−sk: On input m ∈M, get (σ, τ)← Sgnsk(m) and output σ.

• Vpk: On input (m,σ, τ) ∈M× S × T , get b := Vrfpk(m,σ, τ) and
output b.

• ρuf(X) ≡ JX′,Y′K, for some correlated systems X′ and Y′ that
behave as follows: Initially set Q ⊆M×S × T to ∅, and then:

– On input m ∈M to X′, forward m to X, obtain (σ, τ), set Q
to Q∪ {(m,σ, τ)}, and output (σ, τ).

– On input (m,σ, τ) ∈M×S×T to Y′, output 1 if (m,σ, τ) ∈ Q
and 0 otherwise.

• ρn-ua([X1, . . . ,Xn]) ≡ JX′1, . . . ,X′nK, for some correlated systems
X′1, . . . ,X

′
n that behave as follows: Initially set Q ⊆ S to ∅, and

then:
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– On input m ∈M to X′i, for i ∈ [n], forward m to Xi, obtain
σ ∈ S, and if σ ∈ Q, output ⊥, otherwise set Q to Q ∪ {σ},
and output σ.

• ρn-ua-uf([X1, . . . ,Xn]) ≡ JJX′1,Y′1K, . . . , JX′n,Y′nKK, for some corre-
lated systems X′1,Y

′
1, . . . ,X

′
n,Y

′
n that behave as follows: Initially

set Q ⊆ S, Q1, . . .Qn ⊆M×S × T to ∅, and then:

– On input m ∈M to X′i, for i ∈ [n], forward m to Xi, obtain
(σ, τ) ∈ S × T , and if σ ∈ Q, output ⊥, otherwise set Q to
Q∪ {σ}, Qi to Qi ∪ {(m,σ, τ)}, and output σ.

– On input (m,σ, τ) ∈M×S × T to Y′i, for i ∈ [n], output 1 if
(m,σ, τ) ∈ Qi and 0 otherwise.

In our definitions, all keys will always be random variables distributed
(as key-pairs) according to ΣPS’s Gen.

We begin by defining authenticity of partial signatures. For this,
we define a distinguishing problem between a real system that correctly
generates and verifies signatures (stub-tag pairs) and an ideal system
that correctly generates signatures, but only correctly verifies signatures
previously output by the signing oracle.

Definition 4.4.2 (uf-ps).

JJSsk,VpkK,pkK ‌ Jρuf(Ssk),pkK,

for (sk, pk)← Gen.

We next define unambiguity of partial signatures. For this, we define
a distinguishing problem between a real system that correctly generates
signatures via signing oracles for n (different) senders, and an ideal system
that also correctly generates signatures for n (different) senders, but
guarantees that the same stub is never output more than once.

Definition 4.4.3 (n-ua-ps).

JSsk1 , . . . ,Sskn ,pkK ‌ Jρn-ua([Ssk1 , . . . ,Sskn ]),pkK,

for independent (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).
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We next define a combined notion for bilateral signatures capturing
both authenticity and unambiguity at once. For this, we define a dis-
tinguishing problem between a real system that correctly generates and
verifies signatures, via signing and verification oracles for n (different)
senders, and an ideal system that also correctly generates signatures for
n (different) senders, but only correctly verifies signatures previously
generated by the corresponding signing oracle, and never repeats stubs.

Definition 4.4.4 (n-ua-uf-ps).

JJSsk1 ,Vpk1K, . . . , JSskn ,VpknK,pkK ‌ Jρn-ua-uf([Ssk1 , . . . ,Sskn ]),pkK,

for independent (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).

We now show that, as expected, uf-ps and n-ua-ps imply n-ua-uf-ps.

Lemma 4.4.5. (uf-ps, n-ua-ps)
n,1−−−→ n-ua-uf-ps.

Proof. Let (sk1, pk1), . . . , (skn, pkn)← Gen, pk .
= (pk1, . . . , pkn), and con-

sider

• ρi(JJX,YK, xK) .
= Jρuf(Ssk1), . . . , ρ

uf(Sski−1), JX,YK,

JSski+1
,Vpki+1

K, . . . , JSskn ,VpknK,pk′K, for any i ∈ [n], where
pk′

.
= (pk1, . . . , pki−1, x, pki+1, . . . , pkn), and

• ρ(JX1, . . . ,Xn,xK) .
= Jρuf(X1), . . . , ρ

uf(Xn),xK.

Then, using Lemma 2.3.2:

JJSsk1 ,Vpk1K, . . . , JSskn ,VpknK,pkK

‌ Jρuf(Ssk1), . . . , ρ
uf(Sskn),pkK (n times uf-ps)

= ρ(JSsk1 , . . . ,Sskn ,pkK)
‌ ρ(Jρn-ua([Ssk1 , . . . ,Sskn ]),pkK) (n-ua-ps)

≡ Jρn-ua-uf([Ssk1 , . . . ,Sskn ]),pkK.

Finally, we define anonymity of partial signatures. For this, we define
a distinguishing problem between a real system that correctly generates
only stubs, via (reduced) signing oracles for n (different) senders, and an
ideal system that also correctly generates only stubs, but via n copies of
(reduced) signing oracles for the same sender.
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Definition 4.4.6 (n-ik-ps).

JS−sk1 , . . . ,S
−
skn ,pkK ‌ JS−sk1 , . . . ,S

−
sk1 ,pkK

for independent (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).

Unlike what we did for bilateral signatures (and will later do for ring
signatures as well), it is not possible to define a combined security notion
for partial signatures capturing both uf-ua-security and ik-security at once.
This is because a unified distinguishing problem would necessarily require
a full signing oracle, in order to model unforgeability, thus making it
possible to trivially distinguish signatures generated by different senders,
that is, making the modeling of anonymity impossible.

4.4.2 Composable Security of Partial Signatures
As it is made clear by the concrete construction given in [BD09], partial
signature schemes inherently involve a special form of commitment. In
fact, such straightforward construction from a regular signature scheme
and a commitment scheme involves generating a normal signature on the
message, and committing to it and the verification key. The resulting
commitment bitstring will then be the stub σ (the one ensuring anonymity,
but not authenticity), and the opening (or “decommital key”) will corre-
spond to the tag τ (the one ensuring authenticity, but not anonymity).
More details are found in Section 4.4.3.

From this, it becomes immediately apparent that trying to capture
security of partial signatures in a composable fashion, would necessarily
incur the so-called simulator commitment problem. In this specific case,
the issue is as follows: Intuitively, in the real world a sender Si, for i ∈ [n],
generates a full signature (σ, τ) on a message m, and in a first phase sends
only (m,σ) to the receiver R, while in a second phase it sends (m,σ, τ),
which must satisfy Vrfpki(m,σ, τ) = 1. But in the ideal world, during the
first phase the simulator only receives the message m from D-AUTMn→1,
and does not know who the sender is (in particular, it does not know
the value i ∈ [n]). Even though it emulates all n secret/public keys
ski, pki of the senders, it must output a partial signature σ by producing
a full signature (σ, τ) for m using a different random secret key sk (this
difference in the real and ideal worlds is what exactly captures anonymity
of the stub σ). In the second phase, once it obtains the identity i of the
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sender Si who sent m, the simulator must be able to output, along with the
previously defined stub σ, a valid tag τ that satisfies Vrfpki(m,σ, τ) = 1.
But because upon generation of σ from m, the simulator did not use ski,
it is infeasible for it to correctly generate such a valid τ .

Recently, a generic workaround to this problem was put forth by Jost
and Maurer [JM20], where the use of a new type of relaxation, the so-
called interval-wise relaxation, allows to make formal statements capturing
security notions that in regular composability frameworks would incur
in the commitment problem. The interval-wise relaxation builds upon
the combination of two other relaxations, the from-relaxation and the
until-relaxation. Informally, given a resource RES and two monotone
predicates P1, P2 (on the history of events happening globally3 in an
experiment involving RES), the from-relaxation RES[P1 is the specification
that consists of all resources behaving arbitrarily until P2 is true and
exactly as RES afterwards, whereas the until-relaxation RESP2] is the
specification that consists of all resources behaving exactly as RES until
P1 is true and arbitrarily afterwards. The from-until-relaxation RES[P1,P2]

is then defined as the specification that consists of all resources behaving
exactly as RES from when P1 is true and until P2 is true, and arbitrarily
otherwise. Technically, the from-until-relaxation is actually defined as
the transitive closure of applying the from-relaxation and until-relaxation
in alternating order to RES, but can be shown to be equivalent to the
specifications ((RES[P1)P2])[P1 and ((RESP2])[P1)P2]. Finally, lifting the
original definition from [JM20] to our framework, for a substitution s,
the interval-wise relaxation RES[P1,P2]:s corresponds to all resources in
RES[P1,P2] that are also s-close to RES. Formally, this is defined using
the substitution-relaxation introduced in Section 4.1.4 as RES[P1,P2]:s .

=
((RES[P1,P2])s)[P1,P2]. Therefore, again understanding single resources
as singleton sets, we can enhance the specification-based construction
statement from equation (4.2) into

π REAL ⊆
⋂

(P1,P2,s,σ)∈Ω

(σ IDEAL)[P1,P2]:s,

for an appropriate set Ω. More precisely, each element (P1, P2,σ, s)
describes a time-interval [P1, P2] in which the resource π REAL can be

3 Such a predicate is monotone if once it is true for an event on such global events
history, it stays true for all future events in the list of events representing the history.
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abstracted as an elements s-close to IDEAL, with respect to the simulator
σ. As we showed in Theorem 2.4.4 for the resource-based construction
statement used throughout this thesis, in [JM20] it is shown that indeed
the interval-wise specification-based construction statement above satisfies
composition.

Recall that we want to define composable security of a partial signature
scheme ΣPS as the construction of the resource D-AUTMn→1 from the
resources 1-AUTPKn→1, and A-INSϕ(M,S,T )

n→1 , with

ϕ(M,S, T ) .
= ({cmt} ×M× S) ∪ ({aut} ×M× S × T ).

In order to make this statement formal, we need to define how a protocol
πPS, attached to the resource [1-AUTPKn→1,A-INSϕ(M,S,T )

n→1 ], naturally makes
use of ΣPS. First, πPS runs Gen for every sender Si, for i ∈ [n], generating
key-pairs (sk1, pk1), . . . , (skn, pkn). Then it transmits the public keys
pk1, . . . , pkn to the receiver through 1-AUTPKn→1. After that, for each sender
Si it sets up two look-up tables, modeled here as sets Hi ⊆ N×M×S×T
and H′i ⊆ N ×M× S, as well as a handle value hi ∈ N, initially set to
0. Then sender Si might input messages of two different types on its
interface:

• (cmt,m), for some m ∈ M: in this case, πPS uses ski to gener-
ate (σ, τ) ← Sgnski(m), and inputs (cmt,m, σ) to the interface
Si of A-INSϕ(M,S,T )

n→1 . Then it sets hi ← hi + 1 and Hi ← Hi ∪
{(hi,m, σ, τ)}.

• (aut, h), for some h ∈ N: in this case, πPS first checks whether
(h,m, σ, τ) ∈ Hi, for some m,σ, τ . If that is the case, then πPS

inputs (aut,m, σ, τ) to the interface Si of A-INSϕ(M,S,T )
n→1 .

Once the receiver R inputs ⋄ on its interface, πPS also inputs ⋄ to the inter-
face R of A-INSϕ(M,S,T )

n→1 , obtaining a set O ⊆ (N×{cmt}×M×S)∪ (N×
{aut}×M×S ×T ). Then it sets H′ ← H′ ∪{(j,m, σ) | (j, (cmt,m, σ)) ∈
O}, computes the sets O′

.
= {(cmt, j,m) | ∃σ ∈ S : (j, (cmt,m, σ)) ∈

O}, O′′
.
= {(aut, j′, j, i) | ∃m ∈ M, σ ∈ S, τ ∈ T : (j′, aut,m, σ, τ) ∈

O, (j,m, σ) ∈ H′, Vrfpki(m,σ, τ) = 1}, and outputs the set O′ ∪O′′ to R.
We call πPS the protocol using ΣPS in the natural way.

Intuitively, we model composable security of a partial signature scheme
by making a statement for each interval defined by a sequence of inputs at
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the sender interfaces {Si}ni=1 that are of the same type, that is, either all
are of the form (cmt, ·) (messages), or all are of the form (aut, ·) (handles).
This way, we make sure that the individual security statement is within
an interval in which the simulator cannot incur the commitment problem.
For this we define the following predicates:

• Pmsg(j): true if j-th sender input is a message m (E would obtain
(m,σ));

• Phnd(j): true if j-th sender input is a handle h (E would obtain
(m,σ, τ));

• Pfst(j): true at first consecutive sender input of same type as the
j-th;

• Plst(j): true at last consecutive sender input of same type as the
j-th.

ol using ΣPS in the natural way.
Finally, we show that game-based security of partial signatures implies

their composable security.

Theorem 4.4.7. There exist (efficient) simulators σm,σh, such that

πPS [1-AUTPKn→1,A-INSϕ(M,S,T )
n→1 ] ⊆

⋂
(P1,P2,s,σ)∈Ω

(σD-AUTMn→1)
[P1,P2]:s,

for

Ω = {(Pfst(j), Plst(j), n-ik-ps,σm)}j∈[t]:Pmsg(j)

∪ {(Pfst(j), Plst(j), n-ua-uf-ps,σh)}j∈[t]:Phnd(j)
,

where t ∈ N is an upper-bound on the number of transmitted messages
and πPS is the protocol using ΣPS in the natural way.

Proof. Let t ∈ N and define systems

Xm
.
= JS−sk1 , . . . ,S

−
skn ,pkK,

Ym
.
= JS−sk1 , . . . ,S

−
sk1︸ ︷︷ ︸

n times

,pkK,

Xh
.
= JJSsk1 ,Vpk1K, . . . , JSskn ,VpknK,pkK,

Yh
.
= Jρn-ua-uf-ps([Ssk1 , . . . ,Sskn ]),pkK,
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for independent (sk1, pk1), . . . , (skn, pkn)← Gen, pk .
= (pk1, . . . , pkn), and

random variable I $← [n]. We now need to provide simulators σh, σm

and transformations ρh, ρm so that during interval [Pfst(j), Plst(j)], for any
j ∈ [t] such that Pmsg(j),

ρm(Xm) ≡ πPS [1-AUTPKn→1,A-INSϕ(M,S,T )
n→1 ],

ρm(Ym) ≡ σm D-AUTMn→1,

and during interval [Pfst(j), Plst(j)], for any j ∈ [t] such that Phnd(j),

ρh(Xh) ≡ πBS [1-AUTPKn→1,A-INSϕ(M,S,T )
n→1 ],

ρh(Yh) ≡ σh D-AUTMn→1.

For any j ∈ [t] such that Pmsg(j), the simulator σm first generates n
key-pairs (sk1, pk1), . . . , (skn, pkn)← Gen, and on input ⋄ to the interfaces
E emulating 1-AUTPKn→1, σm outputs {(i, pki) | i ∈ [n]} at the same inter-
face. Whenever ⋄ is input to the interfaces E emulating A-INSϕ(M,S,T )

n→1 ,
σm also inputs ⋄ to the interface E of D-AUTMn→1, obtaining a set
O ⊆ {cmt} × N ×M.4 It then outputs the set {(j, cmt,m, σ) | (σ, ·) ←
SgnskI (m),∃ (cmt, j,m) ∈ O} to E. Whenever (m,σ) is input to the inter-
face E emulating A-INSϕ(M,S,T )

n→1 , σm inputs (cmt,m) to the E interface
of D-AUTMn→1.

For any j ∈ [t] such that Pmsg(j), the transformation ρm(JX1, . . . ,Xn,

xK) simply works by emulating πPS[1-AUTPKn→1,A-INSϕ(M,S,T )
n→1 ] during

interval [Pfst(j), Plst(j)], but replacing any call to Gen by the appropriate
value from x, any call to Sgnski by a call to Xi, and using xi from
x = (x1, . . . , xn) as pki to implement Vrfpki .

For any j ∈ [t] such that Phnd(j), the simulator σh first sets Q ← ∅.
Then it generates n key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen, and on
input ⋄ to the interfaces E emulating 1-AUTPKn→1, σh outputs {(i, pki) | i ∈
[n]} at the same interface. Whenever ⋄ is input to the interfaces E

emulating A-INSϕ(M,S,T )
n→1 , σh also inputs ⋄ to the interface E of D-AUTMn→1,

obtaining a set O ⊆ {aut} × N2 ×M × [n].5 It then outputs the set
T

.
= {(j, aut,m, Sgnski(m)) | ∃ (aut, j, j′,m, i) ∈ O} to E, and sets Q ←
4 Recall that σm is working in an interval [Pfst(j), Plst(j)] for j ∈ [t] such that Pmsg(j).
5 Recall that σh is working in an interval [Pfst(j), Plst(j)] for j ∈ [t] such that Phnd(j).
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Q∪{(j,m, σ, τ) | (j, aut,m, σ, τ) ∈ T}. Whenever (m,σ, τ) is input to the
interface E emulating A-INSϕ(M,S,T )

n→1 , if (j,m, σ, τ) ∈ Q for some j ∈ N,
then σ inputs j to the E interface of D-AUTMn→1.

For any j ∈ [t] such that Phnd(j), the transformation ρh(JJX1,Y1K, . . . ,
JXn,YnK,xK) simply works by emulating πPS[1-AUTPKn→1,A-INSϕ(M,S,T )

n→1 ]
during interval [Pfst(j), Plst(j)], but replacing any call to Gen by the appro-
priate value from x, any call to Sgnski by a call to Xi, and any call to
Vrfpki by a call to Yi.

Remark. It is natural to ask whether regular signatures would also satisfy
Theorem 4.4.7. This would correspond to asking whether a partial signa-
ture scheme with empty strings as stubs would still satisfy Theorem 4.4.7.
The short answer is no, because it is easy to see that such a scheme does
not necessarily achieve unambiguity. Nevertheless, we point out that in
principle it should be possible to construct unambiguous regular signature
schemes, but still we chose to use partial signatures instead because they
offer more: If the adversary also publishes its public-key, then non-empty
stubs and unambiguity ensure that it cannot falsely claim any message of
the honest senders. This would follow trivially by appropriately extending
our definitions, but it would not if a regular signature scheme was used
instead. We leave the problem of formalizing this variant open for future
work.

4.4.3 Relations with Previous Notions and Schemes
Our game-based definitions for partial signatures closely resemble the
ones from the literature, except that we chose to phrase the notions
as distinguishing problems, whereas [BD09] defines unforgeability and
unambiguity as forgery problems and anonymity as a bit-guessing problem.
[BD09] also introduces various constructions satisfying their definitions,
one being the so-called StC (sign-then-commit) construction. This partial
signature scheme is based on a regular signature scheme and a commitment
scheme, and works as follows: to create a stub-tag pair (σ, τ) on a message
m under secret-key sk (and corresponding public-key pk), the new signing
function simply produces a regular signature s on m using the base
signature scheme, then produces a commitment-decommitment pair (c, d)
on the concatenation of s and pk, and finally sets σ

.
= c and τ

.
= (s, d).

Verification is then defined in the straightforward way.
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We now informally argue that the simple StC construction6 achieves
our composable notion for bilateral signatures, that is, it constructs
D-AUTMn→1 from [1-AUTPKn→1,A-INSϕ(M,S,T )

n→1 ] when used in the natural
way. To do so, it suffices to relate the notions StC has been shown
to satisfy to our game-based notions of uf-security, ua-security, and ik-
security; then Lemma 4.4.5 implies that StC is also uf-ua-secure, and by
Theorem 4.4.7 it is therefore also composably secure, as per Theorem 4.4.7.

Unforgeability. In [BD09] StC has been shown to be unforgeable if the
base signature scheme is unforgeable and the base commitment scheme is
hiding. The unforgeability notion for partial signatures from [BD09] is
slightly stronger than ours, in the sense that the signing oracle only returns
stubs, and allows the adversary to later selectively see any associated
tags. Such notion can be appropriately weakened, and then shown to
be equivalent to our distinguishing problem from Definition 4.4.2, since
being able to distinguish the two systems implies being able to find a valid
forgery. Therefore, StC also satisfies our uf-security notion for partial
signatures.

Unambiguity. In [BD09] StC has been shown to be unambiguous if the
base commitment scheme is binding. The unambiguity notion for partial
signatures from [BD09] is slightly stronger than ours, in the sense that
the adversary can choose itself public keys, messages, stub and tags of
the forgery. Such notion can be appropriately weakened, and then shown
to be equivalent to our distinguishing problem from Definition 4.4.3, since
being able to distinguish the two systems implies being able to find a
valid forgery. In more detail, this is so because the two systems behave
identically until the distinguisher manages to come up with a verification
query (m′, σ, τ ′) for the j-th verification oracle such that it previously
queried the i-th signing oracle on m, for i ≠ j, and obtained (σ, τ),
and hence distinguishing between the two implies finding such a forgery.
Therefore, StC also satisfies our ua-security notion for partial signatures.

Anonymity. In [BD09] StC has been shown to be anonymous if the base
commitment scheme is hiding. The anonymity notion for partial signatures
from [BD09] is slightly different than ours because it is only defined for two
senders, and it is phrased as a bit-guessing problem. Nevertheless, it can be
shown to be equivalent to our distinguishing problem from Definition 4.4.6,

6 One could make analogous arguments for the other constructions from [BD09].
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up to a multiplicative loss factor of (n−1), via a standard hybrid argument.
Therefore, StC also satisfies our ik-security notion for partial signatures.

4.5 Receiver-Side Anonymous Authenticity

One of the first alternative signature schemes providing some form of
anonymity were group signatures, introduced by Chaum and Van Heyst
[Cv91]. The main idea is that members of a group share a public verifica-
tion key, which can be used to verify a message-signature pair generated
by any of the group members using their own (different) secret keys.
Anonymity is enforced by ensuring that the verification process does not
reveal any partial information about the secret key used to generate the
signature, hence effectively allowing a member to anonymously sign a
message on behalf of the group. Technically, this is achieved by assigning
the role of group manager to a selected member, which is responsible
for generating all members’ secret keys as well as the group’s public
verification key. Therefore, the group manager also has the ability to
reveal the original signer.

This drawback of group signatures was later circumvented by Rivest,
Shamir, and Tauman [RST01], who introduced ring signature. In this
new scheme, a signature is generated by using not only the sender secret
key, but also all the public keys of the group’s members, called a ring in
this context. Therefore, a signature must be transmitted along with the
list of all public keys used, and anonymity is again enforced by requiring
that the verification process does not reveal any partial information about
the secret key used to generate the signature. Another advantage of
ring signatures, compared to group signatures, is that the ring can be
dynamically chosen by the sender, and does not require any cooperation.

The syntax of a ring signature scheme, for a fixed ring size of n ∈ N,
extends that of a regular DSS as follows: each sender generates its key-pair
(ski, pki), for i ∈ [n], but in order to generate a signature σ on a message
m, in addition to ski, the list pk

.
= (pk1, . . . , pkn) of all other senders

public keys is needed. Moreover, also the index i itself is required by the
signing function, in order to link the given secret key to the public key
of the sender. Then, the receiver can verify that σ is a valid signature
for m by using pk, and be assured that the message was authentically
transmitted by one of the known senders, and no external adversary.
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Definition 4.5.1 (Ring Signature Scheme). A ring signature scheme
(RSS) ΣRS

.
= (Gen, Sgn, Vrf) for n ≥ 2 users over message-spaceM and

signature-space S (with ⊥ /∈M∪ S), is such that

• Gen is a distribution over the key-space SK × PK;

• Sgn : [n]× SK × PKn ×M→ S is a probabilistic function;

• Vrf : PKn ×M×S → {0, 1} is a deterministic function.

We require the above to be efficiently samplable/computable. For index
i ∈ [n] and keys sk ∈ SK, pk .

= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N, we
use the short-hand notation Sgni,sk,pk(·) for Sgn(i, sk,pk, ·) and Vrfpk(·, ·)
for Vrf(pk, ·, ·). Moreover, we assume correctness of ΣRS, that is, for all
n ≥ 2, all i ∈ [n], all possible lists of n key-pairs (sk1, pk1), . . . , (skn, pkn)
distributed according to Gen, with pk

.
= (pk1, . . . , pkn), all messages

m ∈M, and all signatures σ ∈ S,

Vrfpk(m,σ) = 1

{
σ ∈

n⋃
i=1

supp (Sgni,ski,pk(m))

}
.

4.5.1 Game-Based Security of Ring Signatures

When ring signatures were introduced in [RST01], no formal game-based
security definitions were given, this was only done later in [BKM06]. There,
a stronger model than the one considered here was introduced, namely
one where the adversary can generate and publish its own public key,
which, as discussed in Section 4.2, would require a certificate authority.
Therefore, here we use adapted versions of the weaker security notions
of unforgeability against fixed-ring attacks and basic anonymity from
[BKM06]. In Section 4.5.3 we relate those notions from the literature to
the new combined definition we introduce next.

In order to define the security of a fixed scheme ΣRS, we define the
following systems (where the dependency on ΣRS is implicit), parame-
terized by index i ∈ [n] and keys sk ∈ SK, sk .

= (sk1, . . . , skn) ∈ SKn,
pk

.
= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N.

• Ssk,pk: On input (i,m) ∈ [n] ×M, get σ ← Sgni,ski,pk(m) and
output σ.
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• Si,sk,pk: On input m ∈M, get σ ← Sgni,sk,pk(m) and output σ.

• Vpk: On input (m,σ) ∈M× S, get b := Vrfpk(m,σ) and output
b.

• ρn-uf(X) ≡ JX′,Y′K, for some correlated systems X′ and Y′ that
behave as follows: Initially set Q ⊆M×S to ∅, and then:

– On input (i,m) ∈ [n] ×M to X′, forward m to X, obtain
σ ∈ S, set Q to Q∪ {(m,σ)}, and output σ.

– On input (m,σ) ∈M×S to Y′, output 1 if (m,σ) ∈ Q and 0
otherwise.

• ρuf(X) ≡ JX′,Y′K, for some correlated systems X′ and Y′ that
behave as follows: Initially set Q ⊆M×S to ∅, and then:

– On input m ∈M to X′, forward m to X, obtain σ ∈ S, set Q
to Q∪ {(m,σ)}, and output σ.

– On input (m,σ) ∈M×S to Y′, output 1 if (m,σ) ∈ Q and 0
otherwise.

• ρn-ik(JX,YK) ≡ JJX′1,Y′1K, . . . , JX′n,Y′nKK, for some correlated sys-
tems X′1,Y

′
1, . . . ,X

′
n,Y

′
n that behave as follows: Set Qi ⊆M×S

to ∅, for each i ∈ [n], and then:

– On input m ∈ M to X′i, forward m to X, obtain σ ∈ S, set
Qi to Qi ∪ {(m,σ)}, and output σ.

– On input (m,σ) ∈ M × S to Y′i, if (m,σ) ∈ Qj , for some
j ∈ [n]∖ {i}, output 0, otherwise forward (m,σ) to Y, obtain
b ∈ {0, 1}, and output b.

In our definitions, all keys will always be random variables distributed
(as key-pairs) according to ΣRS’s Gen.

We begin by defining authenticity of ring signatures. For this, define a
distinguishing problem between a real system that correctly generates and
verifies signatures, via a signing oracle for one sender and a verification
oracle for one receiver, and an ideal system that correctly generates
signatures, but only correctly verifies signatures previously output by the
signing oracle.
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Definition 4.5.2 (uf-rs).

JJSsk,pk,VpkK,pkK ‌ Jρn-uf(Ssk,pk),pkK,

for independent (sk1, pk1), . . . , (skn, pkn)← Gen, sk .
= (sk1, . . . , skn), and

pk
.
= (pk1, . . . , pkn).

We next define anonymity of ring signatures. For this, we define a
distinguishing problem between a real system that correctly generates
and verifies signatures, via signing and verification oracles for n (different)
senders, and an ideal system that also correctly generates and verifies
signatures, but via n copies of signing and verification oracles for the same
sender. The ideal system is also such that if a signature obtained from
the i-th signing oracle is input to the j-th verification oracle, for j ̸= i,
then 0 is output.

Definition 4.5.3 (ik-rs).

JJS1,sk1,pk,VpkK, . . . , JSn,skn,pk,VpkK,pkK
‌

Jρn-ik(JS1,sk1,pk,VpkK),pkK,

for independent (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).

Finally, we define a combined notion for ring signatures capturing both
authenticity and anonymity at once. For this, we define a distinguish-
ing problem between a real system that correctly generates and verifies
signatures, via signing and verification oracles for n (different) senders,
and an ideal system that also correctly generates signatures and only
correctly verifies signatures previously signed, but via n copies of signing
and verification oracles for the same sender.

Definition 4.5.4 (ik-uf-rs).

JJS1,sk1,pk,VpkK, . . . , JSn,skn,pk,VpkK,pkK
‌

Jρn-ik ◦ ρuf(S1,sk1,pk),pkK,

for independent (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).
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We now show that, as expected, uf-rs and n-ik-rs imply n-ik-uf-rs.

Lemma 4.5.5. (uf-rs, n-ik-rs)
1,1−−−→ n-ik-uf-rs.

Proof. Let (sk1, pk1), . . . , (skn, pkn) ← Gen, sk
.
= (sk1, . . . , skn), pk

.
=

(pk1, . . . , pkn), and consider

• ρ1(JX,YK) ≡ JX′,Y′K, for some correlated systems X′ and Y′ that
behave as follows:

– On input m ∈ M to X′, forward (1,m) to X, obtain σ ∈ S,
and output σ.

– On input (m,σ) ∈M× S to Y′, forward (m,σ) to Y, obtain
b ∈ {0, 1}, and output b.

• ρ2(JX,xK) .
= Jρn-ik ◦ ρ1(X),xK.

Then:

JJS1,sk1,pk,VpkK, . . . , JSn,skn,pk,VpkK,pkK

‌ Jρn-ik(JS1,sk1,pk,VpkK),pkK (n-ik-rs)

≡ Jρn-ik ◦ ρ1(JSsk,pk,VpkK),pkK
= ρ2(JJSsk,pk,VpkK,pkK)

‌ ρ2(Jρn-uf(Ssk,pk),pkK) (uf-rs)

= Jρn-ik ◦ ρ1 ◦ ρn-uf(Ssk,pk),pkK

≡ Jρn-ik ◦ ρuf(S1,sk1,pk),pkK.

4.5.2 Composable Security of Ring Signatures

We continue our study of the semantics of ring signatures by defining
their composable security in the constructive cryptography framework.
Composable security notions for ring signatures have been previously
studied in [YO07] within the universal composability (UC) framework.
There, an ideal functionality was introduced, and it was shown to be
securely realized by a protocol employing ring signatures. Unlike with our
approach, such functionality was completely tailored to the ring signature
scheme used by the protocol, that is, it exported operations such as
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signing and verifying, it did not model a communication channel between
senders and receiver. Here we define an ideal resource, independent of
any cryptographic scheme, and show that (among other possible ones), a
protocol employing ring signatures indeed realizes such a resource.

Recall that we want to define composable security of a ring signa-
ture scheme ΣRS as the construction of the resource RA-AUTMn→1 from
the resources 1-AUTPKn⟲1 and A-INSM×Sn→1 . In order to make this state-
ment formal, we need to define how a protocol πRS, attached to the
resource [1-AUTPKn⟲1,A-INSM×Sn→1 ], naturally makes use of ΣRS. First,
πRS runs Gen for every sender Si, for i ∈ [n], generating key-pairs
(sk1, pk1), . . . , (skn, pkn). Then it transmits the public keys pk .

= (pk1, . . . ,
pkn) to the receiver and all senders through 1-AUTPKn⟲1. After that, once
a sender Si inputs a message m on its interface, πRS uses ski and pk
to generate σ ← Sgni,ski,pk(m), and inputs (m,σ) to the interface Si of
A-INSM×Sn→1 . Once the receiver R inputs ⋄ on its interface, πRS also inputs
⋄ to the interface R of A-INSM×Sn→1 , obtaining a set O ⊆ N×M×S, and
outputs the set {(j,m) | ∃ (j,m, σ) ∈ O : Vrfpk(m,σ) = 1} to R. We call
πRS the protocol using ΣRS in the natural way. We can now show that
game-based security of ring signatures implies their composable security.

Theorem 4.5.6. [1-AUTPKn⟲1,A-INSM×Sn→1 ] p πRS;n-ik-uf-rs
=========⇒ RA-AUTMn→1.

Proof. Let define systems

X
.
= JJS1,sk1,pk,VpkK, . . . , JSn,skn,pk,VpkK,pkK,

Y
.
= Jρn-ik ◦ ρuf(S1,sk1,pk),pkK,

for independent (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).

We now need to provide a simulator σ and a transformation ρ such that

ρ(X) ≡ πRS [1-AUTPKn⟲1,A-INSM×Sn→1 ],

ρ(Y) ≡ σ RA-AUTMn→1.

The simulator σ first sets Q ← ∅. Then it generates n key-pairs
(sk1, pk1), . . . , (skn, pkn)← Gen, sets pk

.
= (pk1, . . . , pkn), and on input ⋄

to the interfaces E emulating 1-AUTPKn⟲1, σ outputs {(i, pki) | i ∈ [n]} at
the same interface. Whenever ⋄ is input to the interfaces E emulating
A-INSM×Sn→1 , σ also inputs ⋄ to the interface E of RA-AUTMn→1, obtaining a
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set O ⊆ N×M. It then outputs the set {(j,m, Sgn1,sk1,pk(m)) | ∃ (j,m) ∈
O} to E, and sets Q ← Q∪O. Whenever (m,σ) is input to the interface
E emulating A-INSM×Sn→1 , if (j,m, σ) ∈ Q for some j ∈ N, then σ inputs j
to the E interface of RA-AUTMn→1.

The transformation ρ(JJX1,Y1K, . . . , JXn,YnK,xK) simply works by
emulating πRS[1-AUTPKn⟲1,A-INSM×Sn→1 ], but replacing any calls to Gen by
the appropriate value from x, any call to Sgni,ski,pk by a call Xi, and any
call to Vrfpk by a call to Yi.

4.5.3 Relations with Previous Notions and Schemes

Our game-based definitions for ring signatures closely resemble the ones
from the literature, except that we chose to phrase the notions as distin-
guishing problems, whereas [BKM06] defines unforgeability as a forgery
problem and anonymity as a bit-guessing problem. [BKM06] also intro-
duces a construction satisfying their (stronger) definitions, which we call
the BKM construction here. This ring signature scheme is based on a
public-key encryption scheme, a regular signature scheme, a ZAP (i.e., a
two-round public-coin witness-indistinguishable proof system, where the
first round is a random string from the verifier to the prover), and roughly
works as follows: Sender Si initially generates a public-key encryption
key-pair (skEi , pk

E
i ) and a regular signature key-pair (skSi , pk

S
i ). In order

to generate a ring signature on a message m, Si first produces a regular
signature σ′ on m with its signing key skSi . Then Si produces cipher-
texts C∗j , for j ∈ [n], using encryption keys pkS1 , . . . , pk

S
n , where C∗i is

the encryption of σ′ and the other ciphertexts are encryptions of random
bit-strings instead. Finally, using the ZAP Si produces a proof π, stating
that one of the ciphertexts is indeed an encryption of a valid signature on
m with respect to the public verification key of one of the ring members
(that is, pkSi ). Verification is then defined in the straightforward way.

We now informally argue that the BKM construction achieves our
composable notion for ring signatures, that is, it constructs RA-AUTMn→1

from [1-AUTPKn⟲1,A-INSM×Sn→1 ] when used in the natural way. To do so,
we first observe that the stronger notions of unforgeability w.r.t. insider
corruption and anonymity against attribution attacks that BKM has
been shown to satisfy in [BKM06], trivially imply the weaker notions of
unforgeability against fixed-ring attacks and basic anonymity, respectively,
that [BKM06] also defines. It then suffices to relate the latter notions
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to our game-based notions of uf-security and ik-security, respectively,
since Lemma 4.5.5 then implies that BKM is also uf-ik-secure, which by
Theorem 4.5.6 is therefore also composably secure, as per Theorem 4.5.6.

Unforgeability. In [BKM06] the BKM construction has been shown to
be unforgeable against insider corruption, and therefore also against fixed-
ring attacks, if the base signature scheme is unforgeable. The original
notion of unforgeability against fixed-ring attacks, [BKM06, Definition
5], can be shown to be equivalent to our distinguishing problem from
Definition 4.4.2, since being able to distinguish the two systems implies
being able to find a valid forgery. Therefore, the BKM construction also
satisfies our uf-security notion for ring signatures.

Anonymity. In [BKM06] the BKM construction has been shown to be
anonymous against attribution attacks, and therefore it also satisfies basic
anonymity, if the base public-key encryption scheme is IND-CPA-secure
and the ZAP is witness-indistinguishable. The original notion of basic
anonymity, [BKM06, Definition 5], is slightly different than our ik-security
notion because it is only defined for two senders, and it is phrased as a
bit-guessing problem. Nevertheless, it can be shown to be equivalent to
our distinguishing problem from Definition 4.5.3, up to a multiplicative
loss factor of (n − 1), via a standard hybrid argument. Therefore, the
BKM construction also satisfies our ik-security notion for ring signatures.

4.6 Anonymous Signatures and Signcryption

In this section we briefly discuss anonymous signatures, the precursors
of partial signatures. As we mentioned above, in the setting we are
considering such scheme’s security would not be possible to model, since we
fixed the anonymous insecure channel A-INSXn→1 as the assumed resource.
But if we would strengthen this assumption, it would then be possible
to model anonymous signatures’ security as well. More concretely, if we
additionally include to the assumed resources the anonymous confidential
channel A-CNFXn→1, as informally described in Section 4.1.2, it would
then be possible to define composable security of a protocol πAS using
anonymous signatures as the construction of the anonymous secure channel
A-SECMn→1, also informally described in Section 4.1.2, from 1-AUTPKn→1,
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A-INSSn→1, and A-CNFMn→1, that is,

[1-AUTPKn→1,A-INSSn→1,A-CNFMn→1] p
πAS===⇒ A-SECMn→1.

Intuitively, πAS would use A-INSSn→1 to transmit the signature, and
A-CNFMn→1 for the message, so that the latter is not leaked to the adversary,
which therefore cannot use it to verify and hence break anonymity.

Furthermore, the resource A-CNFMn→1 could in principle be constructed
from 1-AUTPK

′

n←1 and A-INSCn→1 via a protocol πAPKE making use of a
public-key encryption scheme satisfying appropriate anonymity properties.
Then, similarly as the result from [KMO+13], one could show that

[1-AUTPK
′

n←1,A-INSCn→1] p
πAPKE====⇒ A-CNFMn→1.

Finally, one could compose the two schemes using the encrypt-and-sign
paradigm, resulting in an anonymous signcryption scheme. By Theo-
rem 2.4.4, the composed protocol πSC = πAS πAPKE would then imply the
construction

[1-AUTPKn→1, 1-AUT
PK′

n←1,A-INSC×Sn→1] p
πSC===⇒ A-SECMn→1. (4.3)

Referring to the results from [BBM18], which attest that signcryption
realizes a (non-anonymous) secure network from a (non-anonymous) inse-
cure one, it is possible to draw a similar conclusion as we did in Chapter 3
for authenticated encryption, namely that equation (4.3) represents the
composable confirmation that this particular instantiation of the encrypt-
and-sign paradigm is anonymity-preserving.



Chapter 5

Anonymity Creation

5.1 Introduction

5.1.1 Motivation

Introduced in [GJJS04] by Golle et al., universal re-encryption (URE)
is a cryptographic primitive originally intended as a building block for
mix networks, or mixnets for short. URE is like a regular public-key
encryption scheme, but enhanced with a re-encryption algorithm, that on
input a ciphertexts produces a fresh ciphertext still valid for the underlying
plaintext under the original key-pair, and crucially does not require any
key material as input. The guarantee that a mixnet aims to provide, is that
after a sender submits a message and later the intended receiver fetches
such message, an external observer cannot link the two actions together.
This property is called unlinkability, and is an enabler of resistance against
traffic analysis. URE schemes lend themselves naturally as building blocks
of such mixnets by having senders encrypt their messages under the public-
keys of the intended receivers and authentically publishing the ciphertexts
on a bulletin board, an honest mixer regularly re-encrypting all posted
ciphertexts, and receivers fetching all ciphertexts and figuring out which
ones were meant for them.

Recently, Young and Yung [YY18] pointed out that the original com-
bined security notion of URE of Golle et al. [GJJS04] was flawed,
because it captured confidentiality (IND-CPA) and anonymity (key-
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indistinguishability) of the re-encryption function, but only confidentiality
(and not anonymity) of the encryption function. They then claimed to
provide the first formal foundation of URE security, by essentially splitting
the security notion from [GJJS04] into three separate formal notions, and
additionally requiring key-indistinguishability of encryption. Nevertheless,
we argue that they came short of properly capturing the essence of URE,
because their notions do not directly capture unlinkability as an atomic
property of an URE scheme, but rather mix it once with confidentiality
and once with anonymity.

5.1.2 Contributions

The main goal of this chapter is to once more re-analyze the security
foundations of URE, and finally put this primitive on solid grounds. On
the one hand, we show that Young and Yung’s notions from [YY18] fall
short of capturing the essence of URE, which is unlinkability. On the
other hand, we introduce two composable notions that capture the essence
of URE from an application point-of-view, and show that the mentioned
game-based security notions for URE only satisfy the weaker one. All our
results are shown using a new framework that we introduce.

Capturing the Essence of URE: Minimal Game-Based Notions.
Using substitutions, we then show that Young and Yung’s notions are not
minimal. More precisely, we introduce three minimal notions of security,
confidentiality (ind-cpa), anonymity (ik-cpa), and unlinkability (ulk-cpa),
and show that their four notions are implied by and imply ours. More
precisely, we unveil that their four notions are ind-cpa, ik-cpa, ind-cpa
combined with ulk-cpa, and ik-cpa combined with ulk-cpa.

Capturing the Essence of URE: Composable Semantics. Secondly,
we introduce a new composable notion for URE, also using substitutions,
in order to capture the essence of URE from an application point-of-view.
This notion captures the case of an honest mixer, and we show that our
game-based notions, and therefore Young and Yung’s notions, imply it.

5.1.3 Related Work

URE was originally introduced by Golle et al. in [GJJS04], and its security
foundation was crucially analyzed much later in Young and Yung in [YY18].
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Both these works considered security under chosen-plaintext attacks, as
we also do here. An interesting line of research, started by Groth [Gro04],
continued by Prabhakaran and Rosulek [PR07], and culminating in the
recent work by Wang et al. [WCY+21], studies URE security under the
stronger model of chosen-ciphertext attacks, where URE is often referred
to as re-randomizable encryption.

Regarding composable notions, Wikström [Wik04] introduces a UC-
functionality capturing security of an ElGamal re-encryption protocol
that is not universal, that is, re-encryption is performed by the mixers by
decrypting and then encrypting again, and thus is inherently more complex
than our notion. In [PR07] a so-called “replayable message posting” UC-
functionality is introduced, but which does not directly capture the
application of URE in the context of mixnets, and additionally assumes
perfect unlinkability and chosen-ciphertext attacks security.

5.2 Universal Re-Encryption

5.2.1 Extending the Systems Algebra

Recall the notion of cryptographic systems from Section 2.2. For fixed
sets X and Y, we additionally define some special stateless systems as
follows.

Definition 5.2.1 (Special Systems). For any sets X ,Y, we define some
special (X ,Y)-systems (where X and Y are implicit and always clear from
the context) that behave as follows:

• ∗ is an (X ,X )-system that on input x, outputs x.

• 1ξ is an (X , {0, 1})-system that on input x, outputs 1 if x = ξ and
0 otherwise.

• ⊥⊥⊥ is an (X , {⊥})-system that on input any x always outputs ⊥.

• y is an (X ,Y)-system, where y ∈ Y, that on input any x always
outputs y.

• Y is an (X ,Y)-system, where Y is a random variable over Y, that
on input any x, outputs some y with probability Pr[Y = y].
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• $ is an (X ,Y)-system that on input any x, outputs some y with
uniform probability over Y.

We next describe some additional useful ways in which systems can
be combined into new systems, as illustrated in Figure 5.1.

System op./comp. Intuitive description

S1 ▷ S2
x y

S1 S2
x z y

⟨S1,S2⟩
x (y1, y2) x

S1

S2

x

x

y1

y2

(y1, y2)

LS1,S2M
(x1, x2) (y1, y2) (x1, x2)

S1

S2

x1

x2

y1

y2

(y1, y2)

(S)∗
(x, i) yi

S
(x, i)

i

x (y1, y2) yi

(S)i1,i2
x (yi1 , yi2 )

S i1,i2
x (y1, y2) (yi1

, yi2
)

(S)i
x yi

S i
x (y1, y2) yi

Figure 5.1: Schematic representation of the systems from Definition 5.2.1
for ℓ = 2.

Definition 5.2.2 (System Compositions/Operations). Let ℓ ∈ N. For
(Xi,Yi)-system Si, for each i ∈ [ℓ], (X ,×ℓ

i=1
Yi)-system S, and pairwise

different integers i1, . . . , it ⊆ [ℓ], for t ≤ ℓ, we define the systems that
behave as follows:

• S1 ▷ · · · ▷ Sℓ is an (X1,Yℓ)-system defined only if Yi ⊆ Xi+1, for all
i ∈ [ℓ− 1], that on input x, inputs x to S1(x) and obtains y1, then
inputs y1 to S2 and obtains y2, and so on, until it finally outputs yℓ.
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• ⟨S1, . . . ,Sℓ⟩ is an (X ,×ℓ

i=1
Yi)-system defined only if X = Xi, for

all i ∈ [ℓ], that on input x, for each i ∈ [ℓ] inputs x to Si and obtains
yi, and then outputs (y1, . . . , yℓ).

• LS1, . . . ,SℓM is a (×ℓ

i=1
Xi,×ℓ

i=1
Yi)-system that on input (x1, . . . ,

xℓ), for each i ∈ [ℓ] inputs xi to Si and obtains yi, and then outputs
(y1, . . . , yℓ).

• (S)∗ is a ([ℓ]×X ,
⋃ℓ

i=1 Yi)-system that on input (i, x), inputs x to
S and obtains (y1, . . . , yℓ), and then outputs yi.

• (S)i1,...,it is an (X ,×t

i=1
Yji)-system that on input x, inputs x to S

and obtains (y1, . . . , yℓ), and then outputs (yj1 , . . . , yjt).

Finally, we assume that grouping tuples into tuples yields tuples, that is,
for systems R,S,T, we assume ⟨R,S,T⟩ ≡ ⟨R, ⟨S,T⟩⟩ ≡ ⟨⟨R,S⟩,T⟩ and
LR,S,TM ≡ LR, LS,TMM ≡ LLR,SM,TM.

Let now us give some more intuition on Definition 5.2.2 via some
concrete example. Consider systems X(·),Y(·),U(·),V(·), each of which
is parameterized by some value. Then, let’s for example construct the
following system, for some concrete values a, b, c:

J⟨Xa,Yb⟩ ▷ LUa,Vc M2,1, a, b K.

This systems allows interaction with three sub-systems in parallel, where
some of them are correlated. Concretely, the last two sub-systems simply
return the corresponding value, on input ⋄ (note that, in a sense, we
did not make public all three parameters), whereas the first sub-system,
on input some value x, will output a tuple (z′, y′), in a way that also
depend on a, b, c. More precisely, x will first be fed to the system ⟨Xa,Yb⟩,
which means that x will be input in parallel to both Xa and Yb, and the
resulting values y and z will be collected into a tuple (y, z). This will
then be input to the system LUa,VcM, which means that y will be input
to Ua, resulting in y′, whereas z will be input to Vb, resulting in z′. As
before, the resulting values y′ and z′ will be collected into a tuple (y′, z′).
Finally, this tuple will be permuted into (z′, y′), the output of the whole
sub-system.

Since, as per Definition 5.2.2, systems can appear as sub-system of
other systems, we need a way to make this explicit, in order to later
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relate security notions based on systems. To achieve this, the proofs in
this chapter will explicitly show how to factorize systems by exhibiting
a function ρ (the transformation) as per Section 2.2.2, that given a
system of some special form, maps it to another system, but additionally
using operations and compositions from Definition 5.2.2. For example,
looking ahead, in the proof of Lemma 5.3.9, for any system X and
parameter x we define ρ(JX, xK) .

= J⟨Ex,X ▷R⟩, xK, for systems Ex and
R defined later. Then we use ρ to show that, for (sk, pk) ← Gen, the
system JEpk, pk K can be factored out of J⟨Epk,Epk ▷ R⟩, pk K, that is,
ρ(JEpk, pk K) = J⟨Epk,Epk ▷R⟩, pk K. Visually, this can be seen as follows
(ignoring pk):

Epk

ρ

Epk

Epk R

Looking again ahead, let us consider the proof of Lemma 5.3.10 for a
slightly more complex example. There, in the second part of the proof
we define ρ(JX, xK) .

= J⟨∗,∗⟩ ▷ LX, ⟨1m̂, 0⟩M1,3,2,4, xK and then show that,
for (sk, pk) ← Gen, the system JEpk ▷ ⟨∗,R⟩, pk K can be factored out of
J⟨∗,∗⟩ ▷ LEpk ▷ ⟨∗,R⟩, ⟨1m̂, 0⟩M1,3,2,4, pk K. Visually, this can be seen as
follows (ignoring pk and making some simplifications, such as turning the
systems ∗ into wires):

ρ

Epk

1m̂

0

R
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5.2.2 Universal Re-Encryption

Definition 5.2.3. A universal re-encryption (URE) scheme for private-
key space SK, public-key space PK, message spaceM = {0, 1}κ, for some
κ ∈ N, and ciphertext space C, is a tuple ΠURE = (Gen, Enc, Rnc, Dec)
where:

• Gen is the key-pair distribution over SK × PK;

• Enc is the probabilistic encryption algorithm that on input a public
key pk ∈ PK and a message m ∈M, outputs a ciphertext c ∈ C;

• Rnc is the probabilistic re-encryption algorithm that on input a
ciphertext c ∈ C outputs a new ciphertext ĉ ∈ C;

• Dec is the deterministic decryption algorithm that on input a secret
key sk ∈ SK and a ciphertext c ∈ C, outputs a message m ∈M.

As customary, for sk ∈ SK and pk ∈ PK, we write Encpk(·) for Enc(pk, ·)
and Decsk(·) for Dec(sk, ·).

In this chapter all notions are relative to some fixed URE scheme ΠURE,
defining sets SK, PK,M, and C, and for which we define the following
parameterized systems.

Definition 5.2.4. For parameters sk, sk1, . . . , skn ∈ SK, and pk, pk1, . . . ,
pkn ∈ PK, we define the parameterized systems that behave as follows:

• Epk is an (M, C)-system that on input m, outputs Encpk(m).

• X$ .
= $ ▷X, for any system X, is an (M, C)-system that on input

m, samples m̃ $← M, forwards m̃ to X, obtains c, and outputs c
(analogous to ρcpa(X) for symmetric encryption from Chapter 3).

• R is a (C, C)-system that on input c, outputs Rnc(c).

• R∗ is a (C × N, C)-system that on input (c, t), outputs Rnct(c).

• Dsk is a (C,M)-system that on input c, outputs Decsk(c).

• Epk1,...,pkn is a (M× [n], C)-system that on input (m, i), outputs
Encpki(m).
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• Dsk1,...,skn is a (C × [n],M)-system that on input (c, i), outputs
Decski(c).

• In is an ([n]×M×N×[n],M∪{⊥})-system that on input (i,m, t, j),
outputs m if i = j and ⊥ otherwise.

We will use the systems from Definition 5.2.4 to build more complex
systems through the system composition operations from Definition 5.2.2.

5.3 Game-Based Semantics of URE
We begin by defining security of a fixed URE scheme where for notions
naturally living in a multi-user setting (such as robustness and anonymity),
we only consider the case of two receivers. We combine our notions into
single security definitions in Section 5.3.4, where we also show that the
resulting notions are equivalent. We then generalize such combined notions
to arbitrary number of receivers in Section 5.3.5, where we also show that
they are implied by the combined notions for two receivers.

5.3.1 Minimal Notions
The first notions we introduce are the ones that intuitively only capture a
single security guarantee.

For correctness (cor), we consider the substitution of the following two
systems, both of which initially sample a key-pair (sk, pk)← Gen. The first
system, on input a message-integer pair (m, t) ∈M×N, encrypts m into
c ← Encpk(m), re-encrypts t times c, that is, computes ĉi ← Rnc(ĉi−1)
for i ∈ [t] and where ĉ0

.
= c, and finally decrypts ĉt into m′ := Decsk(ĉt)

and outputs m′. The second system, on input a message-integer pair
(m, t) ∈ M × N, simply outputs m. Both systems also give access in
parallel to the public key pk. The intuition is that the scheme is correct
if encrypting, re-encrypting an arbitrary number of times, and then
decrypting with the correct secret key, results in the original message.

Definition 5.3.1 (cor).

JLEpk,∗M ▷R∗ ▷Dsk, pk K ‌ JL∗,∗M1, pk K,

for (sk, pk)← Gen.
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For robustness (rob), we consider the substitution of the following
two systems, both of which initially sample two independent key-pairs
(sk1, pk1), (sk2, pk2)← Gen. The first system, on input a message-integer
pair (m, t) ∈ M× N, encrypts m into c ← Encpk1(m) using the public
key from the first key-pair, re-encrypts t times c, that is, computes
ĉi ← Rnc(ĉi−1) for i ∈ [t] and where ĉ0

.
= c, and finally decrypts ĉt

into m′ := Decsk2(ĉt) using the secret key from the second key-pair,
and outputs m′. The second system, on input a message-integer pair
(m, t) ∈ M × N, simply outputs ⊥. Both systems also give access in
parallel to the public keys pk1 and pk2. The intuition is that the scheme
is robust if encrypting, re-encrypting an arbitrary number of times, and
then decrypting with an incorrect secret key, results in ⊥.

Definition 5.3.2 (rob).

JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K ‌ JL⊥⊥⊥,∗M1, pk1, pk2K,

for independent (sk1, pk1), (sk2, pk2)← Gen.

For confidentiality, modeled as (real-or-random) indistinguishability
of ciphertexts under a chosen-plaintext attack (ind-cpa), we consider the
substitution of the following two systems, both of which initially sample
a key-pair (sk, pk)← Gen. The first system, on input a message m ∈M,
encrypts m into c ← Encpk(m) and outputs c. The second system, on
input a message m ∈M, samples m̃, encrypts m̃ into c̃← Encpk(m̃) and
outputs c̃. Both systems also give access in parallel to the public key pk.
The intuition is that the scheme is confidential if regular encryptions or
encryptions of unrelated messages are indistinguishable.

Definition 5.3.3 (ind-cpa).

JEpk, pk K ‌ JE$
pk, pk K,

for (sk, pk)← Gen.

For anonymity, modeled as key-indistinguishability under a chosen-
plaintext attack (ik-cpa), we consider the substitution of the following
two systems, both of which initially sample two independent key-pairs
(sk1, pk1), (sk2, pk2) ← Gen. The first system has two sub-systems: The
first, on input a message m ∈M, encrypts m into c← Encpk1(m) using



122 CHAPTER 5. ANONYMITY CREATION

the public key from the first key-pair and outputs c, while the second, on
input a message m ∈M, encrypts m into c← Encpk2(m) using the public
key from the second key-pair and outputs c; The second system also has
two sub-systems: Both of them, on input a message m ∈ M, encrypt
m into c ← Encpk1(m) using the public key from the first key-pair and
output c. Both systems also give access in parallel to the public keys pk1
and pk2. The intuition is that the scheme is anonymous if encryptions
under different public keys are indistinguishable.

Definition 5.3.4 (ik-cpa).

JEpk1 ,Epk2 , pk1, pk2K ‌ JEpk1 ,Epk1 , pk1, pk2K,

for independent (sk1, pk1), (sk2, pk2)← Gen.

For unlinkability (ulk-cpa), we consider the substitution of the following
two systems, both of which initially sample a key-pair (sk, pk) ← Gen.
The first system, on input a message m ∈ M, first encrypts m into
c← Encpk(m). Then it computes ĉ← Rnc(c) and outputs (c, ĉ). Formally,
we model this using the operator ▷ for systems that forwards c from
system Epk to system ⟨∗,R⟩, which in turn internally feeds c in parallel
to systems ∗ and R, and collects the outputs c and ĉ in the tuple (c, ĉ).
The second system, on input a message m ∈ M, first encrypts m into
c ← Encpk(m). Then it encrypts again m into c′ ← Encpk(m) using
fresh and independent randomness. Finally, it computes ĉ← Rnc(c′) and
outputs (c, ĉ). Formally, we model this by composing the two systems
Epk and Epk ▷R with the system operator ⟨·, ·⟩. Both systems also give
access in parallel to the public key pk. The intuition is that the scheme
is unlinkable if an encryption and its re-encryption are indistinguishable
from an encryption and the re-encryption of another fresh encryption of
the same message.

Definition 5.3.5 (ulk-cpa).

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,Epk ▷R⟩, pk K,

for (sk, pk)← Gen.

For strong unlinkability (sulk-cpa), we consider the same substitution
as for regular unlinkability, except that we replace the system Epk ▷R



5.3. GAME-BASED SEMANTICS OF URE 123

by the system Epk as a sub-system of the right-hand side system. The
intuition is that the scheme is strongly unlinkable if an encryption and
its re-encryption are indistinguishable from two fresh encryptions of the
same message.

Definition 5.3.6 (sulk-cpa).

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,Epk⟩, pk K,

for (sk, pk)← Gen.

5.3.2 Young and Yung’s Combined Notions
We now introduce the security notions from in [YY18] that aim at cap-
turing confidentiality and anonymity of the re-encryption function. Note
that we introduce a different flavor than the one introduced there, but in
Appendix B.1 we show that our notions are essentially equivalent. More-
over, as we will see in Section 5.3.3, these two notions are not necessary,
if a URE scheme already satisfies ind-cpa, ik-cpa, and ulk-cpa.

For confidentiality of re-encryption (ind-r-cpa), we consider the sub-
stitution of the following two systems, both of which initially sample a
key-pair (sk, pk) ← Gen. The first system, on input a message m ∈ M,
first encrypts m into c ← Encpk(m). Then it computes ĉ ← Rnc(c) and
outputs (c, ĉ). The second system, on input a message m ∈ M, first
encrypts m into c ← Encpk(m). Then it samples m̃, encrypts m̃ into
c̃ ← Encpk(m̃), computes ĉ ← Rnc(c̃), and finally outputs (c, ĉ). Both
systems also give access in parallel to the public key pk. The intuition is
that the scheme has confidential re-encryption if an encryption and its re-
encryption are indistinguishable from an encryption and the re-encryption
of the encryption of an unrelated message.

Definition 5.3.7 (ind-r-cpa).

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,E
$
pk ▷R⟩, pk K,

for (sk, pk)← Gen.

For anonymity of re-encryption (ik-r-cpa), we consider the substitu-
tion of the following two systems, both of which initially sample two
independent key-pairs (sk1, pk1), (sk2, pk2) ← Gen. The first system has
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two sub-systems: The first, on input a message m ∈M, encrypts m into
c ← Encpk1(m) using the public key from the first key-pair, computes
ĉ← Rnc(c), and then outputs (c, ĉ), while the second, on input a message
m ∈ M, encrypts m into c ← Encpk2(m) using the public key from the
second key-pair, computes ĉ← Rnc(c), and then outputs (c, ĉ) The second
system also has two sub-systems: The first is the same as in the first
system, whereas the second, on input a message m ∈M, encrypts m into
c← Encpk2(m) using the public key from the second key-pair, encrypts
again m into c′ ← Encpk1(m) using the public key from the first key-pair,
then computes ĉ ← Rnc(c′) and outputs (c, ĉ). Both systems also give
access in parallel to the public keys pk1 and pk2. The intuition is that
the scheme has anonymous re-encryption if two pairs consisting of an
encryption and its re-encryption under two independent public keys are
indistinguishable from an encryption and its re-encryption paired with and
encryption and the re-encryption of an encryption of the same message
under an unrelated public key.

Definition 5.3.8 (ik-r-cpa).

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
‌

JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K,

for independent (sk1, pk1), (sk2, pk2)← Gen.

5.3.3 Relations Among Security Notions

Minimality of ind-cpa, ik-cpa, and ulk-cpa. We begin by showing that
the four notions ind-cpa, ik-cpa, ind-r-cpa, and ik-r-cpa put forth by [YY18]
are not minimal, in the sense that they are all implied by the three notions
ind-cpa, ik-cpa, and ulk-cpa, and vice versa. Figure 5.2 summarizes all
relations (both implications and separations) that we prove. Furthermore,
in Appendix B.1 we show that our notions are essentially equivalent to
the ones introduced in [YY18].

Lemma 5.3.9. (ind-cpa, ulk-cpa)
1,1−−−→ ind-r-cpa.



5.3. GAME-BASED SEMANTICS OF URE 125

ind-cpa ∧ ulk-cpa ∧ ik-cpa

ind-r-cpa ik-r-cpa
- - - -

Figure 5.2: Relations among encryption and re-encryption security no-
tions.

Proof. Let (sk, pk)← Gen and consider ρ(JX, xK) .
= J⟨Ex,X▷R⟩, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,Epk ▷R⟩, pk K (ulk-cpa)
= ρ(JEpk, pk K)

‌ ρ(JE$
pk, pk K) (ind-cpa)

= J⟨Epk,E
$
pk ▷R⟩, pk K.

Lemma 5.3.10. ind-cpa ↚→ ind-r-cpa.

Proof.

• ind-cpa −̸→ ind-r-cpa: Let Π
.
= (Gen, Enc, Rnc, Dec). For any

(sk, pk) ∈ supp Gen, define Π′
.
= (Gen′, Enc′, Rnc′, Dec′) as:

– Gen′ .= Gen;

– Enc′pk(m)
.
= Encpk(m), for any m ∈M;

– Rnc′(c)
.
= c, for any c ∈ C;

– Dec′sk(c)
.
= Decsk(c), for any c ∈ C;

with corresponding systems E′pk, R
′, and D′sk. Let (sk, pk)← Gen.

If Π is correct, then Π′ is clearly also correct, and if

JEpk, pk K ‌ JE$
pk, pk K,

then
JE′pk, pk K ≡ JEpk, pk K ‌ JE$

pk, pk K ≡ JE′$pk, pk K.
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But clearly,

JE′pk ▷ ⟨∗,R′⟩, pk K ≡ JEpk ▷ ⟨∗,∗⟩, pk K

̸‌ J⟨Epk,E
$
pk⟩, pk K

≡ J⟨Epk,E
$
pk ▷R⟩, pk K.

• ind-r-cpa −̸→ ind-cpa: Let Π
.
= (Gen, Enc, Rnc, Dec). For any

(sk, pk) ∈ supp Gen and a fixed m̂ ∈M, define Π′
.
= (Gen′, Enc′, Rnc′,

Dec′) as:

– Gen′ .= Gen;

– Enc′pk(m)
.
= (Encpk(m),1{m = m̂}), for any m ∈M;

– Rnc′((c, b))
.
= (Rnc(c), 0), for any (c, b) ∈ C × {0, 1};

– Dec′sk((c, b))
.
= Decsk(c), for any (c, b) ∈ C × {0, 1};

with corresponding systems E′pk, R
′, and D′sk. Let (sk, pk)← Gen.

If Π is correct, then Π′ is clearly also correct, and if

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,E
$
pk ▷R⟩, pk K,

then with ρ(JX, xK) .
= J⟨∗,∗⟩ ▷ LX, ⟨1m̂, 0⟩M1,3,2,4, xK,

JE′pk ▷ ⟨∗,R′⟩, pk K ≡ J⟨∗,∗⟩ ▷ LEpk ▷ ⟨∗,R⟩, ⟨1m̂, 0⟩M1,3,2,4, pk K

= ρ(JEpk ▷ ⟨∗,R⟩, pk K)

‌ ρ(J⟨Epk,E
$
pk ▷R⟩, pk K)

= J⟨∗,∗⟩ ▷ L⟨Epk,E
$
pk ▷R⟩, ⟨1m̂, 0⟩M1,3,2,4, pk K

≡ J⟨E′pk,E′$pk ▷R′⟩, pk K.

But with random variable B ∈ {0, 1} such that Pr[B = 1] = 1
|M| ,

JE′pk, pk K ≡ J⟨∗,∗⟩ ▷ LEpk,1m̂M, pk K

̸‌ J⟨∗,∗⟩ ▷ LE$
pk, BM, pk K

≡ JE′$pk, pk K,

since clearly 1m̂ ̸‌ B.
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Lemma 5.3.11. ind-r-cpa 2−→ ulk-cpa.

Proof. Let (sk, pk)← Gen and consider ρ(JX, xK) .
= J⟨Ex, (X)2⟩, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,E
$
pk ▷R⟩, pk K (ind-r-cpa)

≡ J⟨Epk, ⟨Epk,E
$
pk ▷R⟩2⟩, pk K

= ρ(J⟨Epk,E
$
pk ▷R⟩, pk K)

‌ ρ(JEpk ▷ ⟨∗,R⟩, pk K) (ind-r-cpa)
= J⟨Epk, (Epk ▷ ⟨∗,R⟩)2⟩, pk K
≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 5.3.12. ulk-cpa −̸→ ind-r-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen and a

fixed m̂ ∈M, define Π′
.
= (Gen′, Enc′, Rnc′, Dec′) as:

• Gen′ .= Gen;

• Enc′pk(m)
.
= (Encpk(m),1{m = m̂}), for any m ∈M;

• Rnc′((c, b))
.
= (Rnc(c), b), for any (c, b) ∈ C × {0, 1};

• Dec′sk((c, b))
.
= Decsk(c), for any (c, b) ∈ C × {0, 1};

with corresponding systems E′pk, R
′, and D′sk. Let (sk, pk)← Gen. If Π is

correct, then Π′ is clearly also correct, and if

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,Epk ▷R⟩, pk K,

then with ρ(JX, xK) .
= J⟨∗,∗⟩ ▷ LX, ⟨1m̂,1m̂⟩M1,3,2,4, xK,

JE′pk ▷ ⟨∗,R′⟩, pk K ≡ J⟨∗,∗⟩ ▷ LEpk ▷ ⟨∗,R⟩, ⟨1m̂,1m̂⟩M1,3,2,4, pk K

= ρ(JEpk ▷ ⟨∗,R⟩, pk K)
‌ ρ(J⟨Epk,Epk ▷R⟩, pk K)
= J⟨∗,∗⟩ ▷ L⟨Epk,Epk ▷R⟩, ⟨1m̂,1m̂⟩M1,3,2,4, pk K
≡ J⟨E′pk,E′pk ▷R′⟩, pk K.
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But with random variable B ∈ {0, 1} such that Pr[B = 1] = 1
|M| ,

JE′pk ▷ ⟨∗,R′⟩, pk K ≡ J⟨∗,∗⟩ ▷ LEpk ▷ ⟨∗,R⟩, ⟨1m̂,1m̂⟩M1,3,2,4, pk K

̸‌ J⟨∗,∗⟩ ▷ L⟨Epk,E
$
pk ▷R⟩, ⟨1m̂, B⟩M1,3,2,4, pk K

≡ J⟨E′pk,E′$pk ▷R′⟩, pk K.

since clearly 1m̂ ̸‌ B.

Lemma 5.3.13. (ik-cpa, ulk-cpa)
1,2−−−→ ik-r-cpa.

Proof. Let (sk1, pk1), (sk2, pk2)← Gen, and consider

• ρ1(JX, xK) .
= JX,Epk2 ▷ ⟨∗,R⟩, x, pk2K,

• ρ2(JX, xK) .
= J⟨Epk1 ,Epk1 ▷R⟩,X, pk1, xK, and

• ρ3(JX,T, x, yK) .
= J⟨Ex,X ▷R⟩, ⟨Ey,T ▷R⟩, x, yK.

Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ1(JEpk1 ▷ ⟨∗,R⟩, pk1K)
‌ ρ1(J⟨Epk1 ,Epk1 ▷R⟩, pk1K) (ulk-cpa)
= J⟨Epk1 ,Epk1 ▷R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ2(JEpk2 ▷ ⟨∗,R⟩, pk2K)
‌ ρ2(J⟨Epk2 ,Epk2 ▷R⟩, pk2K) (ulk-cpa)
= J⟨Epk1 ,Epk1 ▷R⟩, ⟨Epk2 ,Epk2 ▷R⟩, pk1, pk2K
= ρ3(JEpk1 ,Epk2 , pk1, pk2K)
‌ ρ3(JEpk1 ,Epk1 , pk1, pk2K) (ik-cpa)
= J⟨Epk1 ,Epk1 ▷R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K.

Lemma 5.3.14. ik-cpa ↚→ ik-r-cpa.

Proof.

• ik-cpa −̸→ ik-r-cpa: Analogous to the case −̸→ in the proof of
Lemma 5.3.10.
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• ik-r-cpa −̸→ ik-cpa: Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈

supp Gen, define Π′
.
= (Gen′, Enc′, Rnc′, Dec′) as:

– Gen′ .= Gen;
– Enc′pk(m)

.
= (Encpk(m), pk), for any m ∈M;

– Rnc′((c, pk′)) .
= (Rnc(c),⊥), for any (c, pk′) ∈ C × (PK ∪ {⊥});

– Dec′sk((c, pk
′))

.
= Decsk(c), for any (c, pk′) ∈ C × (PK ∪ {⊥});

with corresponding systems E′pk, R′, and D′sk. Let (sk1, pk1),
(sk2, pk2) ← Gen. If Π is correct, then Π′ is clearly also correct,
and if

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
‌

JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K.
then with

ρ(JX,Y, x, yK) .
= JX ▷ L⟨∗, x⟩, ⟨∗,⊥⊥⊥⟩M,Y ▷ L⟨∗, y⟩, ⟨∗,⊥⊥⊥⟩M, x, yK,

JE′pk1 ▷ ⟨∗,R
′⟩,E′pk2 ▷ ⟨∗,R

′⟩, pk1, pk2K
≡ JEpk1 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk1⟩, ⟨∗,⊥⊥⊥⟩M,

Epk2 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk2⟩, ⟨∗,⊥⊥⊥⟩M, pk1, pk2K
= ρ(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)
‌ ρ(JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K)
= JEpk1 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk1⟩, ⟨∗,⊥⊥⊥⟩M,
⟨Epk2 ,Epk1 ▷R⟩ ▷ L⟨∗, pk2⟩, ⟨∗,⊥⊥⊥⟩M, pk1, pk2K

≡ JE′pk1 ▷ ⟨∗,R
′⟩, ⟨Epk2 ,E

′
pk1 ▷R

′⟩, pk1, pk2K.

But clearly,

JE′pk1 ,E
′
pk2 , pk1, pk2K ≡ JEpk1 ▷ ⟨∗, pk1⟩,Epk2 ▷ ⟨∗, pk2⟩, pk1, pk2K

̸‌ JEpk1 ▷ ⟨∗, pk1⟩,Epk1 ▷ ⟨∗, pk1⟩, pk1, pk2K
≡ JE′pk1 ,E

′
pk1 , pk1, pk2K.

Lemma 5.3.15. ik-r-cpa 2−→ ulk-cpa.



130 CHAPTER 5. ANONYMITY CREATION

Proof. Let (sk, pk), (sk′, pk′)← Gen, and consider

• ρ1(JX,Y, x, yK) .
= JY, yK and

• ρ2(JX,Y, x, yK) .
= J⟨Ey, (Y)2⟩, yK.

Then:

JEpk ▷ ⟨∗,R⟩, pk K
= ρ1(JEpk′ ▷ ⟨∗,R⟩,Epk ▷ ⟨∗,R⟩, pk′, pk K)
‌ ρ1(JEpk′ ▷ ⟨∗,R⟩, ⟨Epk,Epk′ ▷R⟩, pk′, pk K) (ik-r-cpa)
= J⟨Epk,Epk′ ▷R⟩, pk K
≡ J⟨Epk, ⟨Epk,Epk′ ▷R⟩2⟩, pk K
= ρ2(JEpk′ ▷ ⟨∗,R⟩, ⟨Epk,Epk′ ▷R⟩, pk′, pk K)
‌ ρ2(JEpk′ ▷ ⟨∗,R⟩,Epk ▷ ⟨∗,R⟩, pk′, pk K) (ik-r-cpa)
= J⟨Epk, (Epk ▷ ⟨∗,R⟩)2⟩, pk K
≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 5.3.16. ulk-cpa −̸→ ik-r-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define

Π′
.
= (Gen′, Enc′, Rnc′, Dec′) as:

• Gen′ .= Gen;

• Enc′pk(m)
.
= (Encpk(m), pk), for any m ∈M;

• Rnc′((c, pk′)) .
= (Rnc(c), pk′), for any (c, pk′) ∈ C × (PK ∪ {⊥});

• Dec′sk((c, pk
′))

.
= Decsk(c), for any (c, pk′) ∈ C × (PK ∪ {⊥});

with corresponding systems E′pk, R
′, and D′sk. Let (sk, pk)← Gen. If Π is

correct, then Π′ is clearly also correct, and if

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,Epk ▷R⟩, pk K,
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then with ρ(JX, xK) .
= JX ▷ L⟨∗, x⟩, ⟨∗, x⟩M, xK,

JE′pk ▷ ⟨∗,R′⟩, pk K ≡ JEpk ▷ ⟨∗,R⟩ ▷ L⟨∗, pk⟩, ⟨∗, pk⟩M, pk K

= ρ(JEpk ▷ ⟨∗,R⟩, pk K)
‌ ρ(J⟨Epk,Epk ▷R⟩, pk K)
= J⟨Epk,Epk ▷R⟩ ▷ L⟨∗, pk⟩, ⟨∗, pk⟩M, pk K
≡ J⟨E′pk,E′pk ▷R′⟩, pk K.

But clearly, for (sk1, pk1), (sk2, pk2)← Gen,

JE′pk1 ▷ ⟨∗,R
′⟩,E′pk2 ▷ ⟨∗,R

′⟩, pk1, pk2K
≡ JEpk1 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk1⟩, ⟨∗, pk1⟩M,

Epk2 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk2⟩, ⟨∗, pk2⟩M, pk1, pk2K
̸‌ JEpk1 ▷ ⟨∗,R⟩ ▷ L⟨∗, pk1⟩, ⟨∗, pk1⟩M,
⟨Epk2 ,Epk1 ▷R⟩ ▷ L⟨∗, pk2⟩, ⟨∗, pk1⟩M, pk1, pk2K

≡ JE′pk1 ▷ ⟨∗,R
′⟩, ⟨Epk2 ,E

′
pk1 ▷R

′⟩, pk1, pk2K.

Stronger Unlinkability. We next show that the strong unlinkability
notion sulk-cpa we put forth is significantly stronger than the conventional
unlinkability notion ulk-cpa. In the proof of Lemma 5.3.18 we used a
minimal counterexample, but if instead of a bit b ∈ {0, 1} we would
append a counter t ∈ {0, 1}k, for some k ∈ N, to the underlying ciphertext
(initialized to 0 by Enc, increased by 1 by Rnc, and ignored by Dec),
the proof would still go through. This makes it evident that ulk-cpa is
weaker than sulk-cpa in the sense that, in general, a ulk-cpa-secure scheme
does not hide the number of re-encryptions a ciphertext went through. In
practice, this translates into such a scheme not hiding the number of hops
a message goes through in a mixnet, which is a property that was ignored
in [YY18].

Lemma 5.3.17. sulk-cpa 2−→ ulk-cpa.
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Proof. Let (sk, pk)← Gen and consider ρ(JX, xK) .
= JEx, (X)2, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,Epk⟩, pk K (sulk-cpa)
≡ J⟨Epk, ⟨Epk,Epk⟩2⟩, pk K
= ρ(J⟨Epk,Epk⟩, pk K)
‌ ρ(JEpk ▷ ⟨∗,R⟩, pk K) (sulk-cpa)
= J⟨Epk, (Epk ▷ ⟨∗,R⟩)2⟩, pk K
≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 5.3.18. ulk-cpa −̸→ sulk-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define

Π′
.
= (Gen′, Enc′, Rnc′, Dec′) as:

• Gen′ .= Gen;

• Enc′pk(m)
.
= (Encpk(m), 0), for any m ∈M;

• Rnc′((c, b))
.
= (Rnc(c), 1), for any (c, b) ∈ C × {0, 1};

• Dec′sk((c, b))
.
= Decsk(c), for any (c, b) ∈ C × {0, 1};

with corresponding systems E′pk, R
′, and D′sk. Let (sk, pk)← Gen. If Π is

correct, then Π′ is clearly also correct, and if

JEpk ▷ ⟨∗,R⟩, pk K ‌ J⟨Epk,Epk ▷R⟩, pk K,

then with ρ(JX, xK) .
= JX ▷ L⟨∗, 0⟩, ⟨∗, 1⟩M, xK,

JE′pk ▷ ⟨∗,R′⟩, pk K ≡ JEpk ▷ ⟨∗,R⟩ ▷ L⟨∗, 0⟩, ⟨∗, 1⟩M, pk K

= ρ(JEpk ▷ ⟨∗,R⟩, pk K)
‌ ρ(J⟨Epk,Epk ▷R⟩, pk K)
= J⟨Epk,Epk ▷R⟩ ▷ L⟨∗, 0⟩, ⟨∗, 1⟩M, pk K
≡ J⟨E′pk,E′pk ▷R′⟩, pk K.

But clearly,

JE′pk ▷ ⟨∗,R′⟩, pk K ≡ JEpk ▷ ⟨∗,R⟩ ▷ L⟨∗, 0⟩, ⟨∗, 1⟩M, pk K

̸‌ J⟨Epk,Epk⟩ ▷ L⟨∗, 0⟩, ⟨∗, 0⟩M, pk K
≡ J⟨E′pk,E′pk⟩, pk K.
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ind-cpa

ind-ik-ulk-cpa ∧ ulk-cpa sulk-cpa ∧ ind-ik-sulk-cpa

ik-cpa

-

Figure 5.3: Relations among combined notions.

5.3.4 Combined Notions

In this section we introduce three notions that capture more security
guarantees at once, which will be easier to relate to the composable
notions we will introduce later. Figure 5.3 summarizes all relations (both
implications and separations) that we show in this section. Furthermore,
in Appendix B.1.3 we describe a different combined notion, ind-ik-r-cpa,
that would result by naturally combining Young and Yung’s ind-r-cpa and
ik-r-cpa notions (but which is less directly relatable to our composable
notions). There, we also show some implications and separations. Finally,
in Section 5.5, we show that the original URE scheme based on ElGamal
form [GJJS04] satisfies our strongest notion ind-ik-sulk-cpa.

For the combined notion of correctness and robustness (cor-rob), we
want to be able to substitute a pair of systems S1 and S2 depending on
two independent key-pairs (sk1, pk1) and (sk2, pk2), where system Si, for
i ∈ [2], on input a tuple (m, t, j) ∈ M× N × [2] encrypts m using pki,
re-encrypts the resulting ciphertext t times, decrypts it with key skj , and
outputs the resulting message (or ⊥), by a pair of systems where Si, on
input (m, t, j), always outputs m if j = i and ⊥ otherwise.

Definition 5.3.19 (cor-rob).

JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , LEpk2 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K
‌

JL∗,⊥⊥⊥,∗M ▷ ⟨∗,∗⟩∗, L∗,⊥⊥⊥,∗M2,1,3 ▷ ⟨∗,∗⟩∗, pk1, pk2K,

for independent (sk1, pk1), (sk2, pk2)← Gen.
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For the combined notion of confidentiality, anonymity, and unlinka-
bility (ind-ik-ulk-cpa), we want to be able to substitute a pair of systems
that encrypt and then re-encrypt under two independent keys, by a pair
of systems both first sampling m̃, producing two independent encryptions
of m̃ under the first key, and only re-encrypting the second ciphertext.

Definition 5.3.20 (ind-ik-ulk-cpa).

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
‌

J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pk2K,

for independent (sk1, pk1), (sk2, pk2)← Gen.

For the combined notion of confidentiality, anonymity, and unlinkabil-
ity (ind-ik-ulk-cpa), we want to be able to substitute a pair of systems that
encrypt and then re-encrypt under two independent keys, by a pair of sys-
tems both first sampling m̃, and producing two independent encryptions
of m̃ under the first key.

Definition 5.3.21 (ind-ik-sulk-cpa).

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
‌

J⟨E$
pk1

,E$
pk1
⟩, ⟨E$

pk1
,E$

pk1
⟩, pk1, pk2K,

for independent (sk1, pk1), (sk2, pk2)← Gen.

In the following, (as well as in Appendix B.1.3), some proofs (of both
implications and separations) use the exact same sequence of transforma-
tions as previous proofs (but on possibly different systems). In such cases,
instead of essentially repeating the exact same argument, we say that the
proof is analogous to a previous one.

Lemma 5.3.22. (cor, rob) ⇐⇒ cor-rob.

Proof.

• (cor, rob)
2,2−−−→ cor-rob: Let (sk1, pk1), (sk2, pk2)← Gen, and consider
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– ρ1(JX, xK)
.
= J⟨X, LEx,∗M ▷R∗ ▷Dsk2⟩∗,

⟨LEpk2 ,∗M ▷R∗ ▷Dsk1 , LEpk2 ,∗M ▷R∗ ▷Dsk2⟩∗, x, pk2K,
– ρ2(JX, xK)

.
= J⟨L∗,∗M1, LEpk1 ,∗M ▷R∗ ▷Dsk2⟩∗,

⟨LEx,∗M ▷R∗ ▷Dsk1 ,X⟩∗, pk1, xK,
– ρ3(JX, x, yK)

.
= J⟨L∗,∗M1,X⟩∗, ⟨LEy,∗M ▷R∗ ▷Dsk1 , L∗,∗M1⟩∗, x, yK, and

– ρ4(JX, x, yK) .
= J⟨L∗,∗M1, L⊥⊥⊥,∗M1⟩∗, ⟨X, L∗,∗M1⟩∗, y, xK.

Then:

JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , LEpk2 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 ,

pk1, pk2K
≡ J⟨LEpk1 ,∗M ▷R∗ ▷Dsk1 , LEpk1 ,∗M ▷R∗ ▷Dsk2⟩∗,
⟨LEpk2 ,∗M ▷R∗ ▷Dsk1 , LEpk2 ,∗M ▷R∗ ▷Dsk2⟩∗, pk1, pk2K

= ρ1(JLEpk1 ,∗M ▷R∗ ▷Dsk1 , pk1K)
‌ ρ1(JL∗,∗M1, pk1K) (cor)
= J⟨L∗,∗M1, LEpk1 ,∗M ▷R∗ ▷Dsk2⟩∗,
⟨LEpk2 ,∗M ▷R∗ ▷Dsk1 , LEpk2 ,∗M ▷R∗ ▷Dsk2⟩∗, pk1, pk2K

= ρ2(JLEpk2 ,∗M ▷R∗ ▷Dsk2 , pk2K)
‌ ρ2(JL∗,∗M1, pk2K) (cor)
= J⟨L∗,∗M1, LEpk1 ,∗M ▷R∗ ▷Dsk2⟩∗,
⟨LEpk2 ,∗M ▷R∗ ▷Dsk1 , L∗,∗M1⟩∗, pk1, pk2K

= ρ3(JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K)
‌ ρ3(JL⊥⊥⊥,∗M1, pk1, pk2K) (rob)
= J⟨L∗,∗M1, L⊥⊥⊥,∗M1⟩∗, ⟨Epk2 ▷R

∗ ▷Dsk1 , L∗,∗M1⟩∗, pk1, pk2K
= ρ4(JLEpk2 ,∗M ▷R∗ ▷Dsk1 , pk2, pk1K)
‌ ρ4(JL⊥⊥⊥,∗M1, pk2, pk1K) (rob)
= J⟨L∗,∗M1, L⊥⊥⊥,∗M1⟩∗, ⟨L⊥⊥⊥,∗M1, L∗,∗M1⟩∗, pk1, pk2K
≡ JL∗,⊥⊥⊥,∗M ▷ ⟨∗,∗⟩∗, L∗,⊥⊥⊥,∗M2,1,3 ▷ ⟨∗,∗⟩∗, pk1, pk2K.
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• cor-rob 1−→ cor: Let (sk1, pk1), (sk2, pk2) ← Gen, and consider

ρ(JX,Y, x, yK) .
= JL∗, ⟨∗, 1⟩M ▷X, xK. Then:

JLEpk1 ,∗M ▷R∗ ▷Dsk1 , pk1K
≡ JL∗, ⟨∗, 1⟩M ▷ LEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk K
= ρ(JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 ,

LEpk2 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K)
‌ ρ(JL∗,⊥⊥⊥,∗M ▷ ⟨∗,∗⟩∗,

L∗,⊥⊥⊥,∗M2,1,3 ▷ ⟨∗,∗⟩∗, pk1, pk2K) (cor-rob)
= JL∗, ⟨∗, 1⟩M ▷ L∗,⊥⊥⊥,∗M ▷ ⟨∗,∗⟩∗, pk1K
≡ JL∗,∗M1, pk1K,

• cor-rob 1−→ rob: Let (sk1, pk1), (sk2, pk2) ← Gen, and consider
ρ(JX,Y, x, yK) .

= JL∗, ⟨∗, 2⟩M ▷X, xK. Then:

JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K
≡ JL∗, ⟨∗, 2⟩M ▷ LEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K
= ρ(JLEpk1 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 ,

LEpk2 ,∗,∗M ▷ LR∗,∗M ▷Dsk1,sk2 , pk1, pk2K)
‌ ρ(JL∗,⊥⊥⊥,∗M ▷ ⟨∗,∗⟩∗,

L∗,⊥⊥⊥,∗M2,1,3 ▷ ⟨∗,∗⟩∗, pk1, pk2K) (cor-rob)
= JL∗, ⟨∗, 2⟩M ▷ L∗,⊥⊥⊥,∗M ▷ ⟨∗,∗⟩∗, pk1, pk2K
≡ J⊥⊥⊥, pk1, pk2K.

Lemma 5.3.23. (ind-cpa, ik-cpa, ulk-cpa)
1,1,1−−−−→ ind-ik-ulk-cpa.

Proof. Let (sk1, pk1), (sk2, pk2)← Gen, and consider

• ρ1(JX,Y, x, yK) .
= JX ▷ ⟨∗,R⟩,Y ▷ ⟨∗,R⟩, x, yK,

• ρ2(JX, xK) .
= JX,X, x, pk2K, and

• ρ3(JX, xK) .
= J⟨X,X ▷R⟩, ⟨X,X ▷R⟩, x, pk2K.
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Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ1(JEpk1 ,Epk2 , pk1, pk2K)
‌ ρ1(JEpk1 ,Epk1 , pk1, pk2K) (ik-cpa)
= JEpk1 ▷ ⟨∗,R⟩,Epk1 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ2(JEpk1 ▷ ⟨∗,R⟩, pk1K)
‌ ρ2(J⟨Epk1 ,Epk1 ▷R⟩, pk1K) (ulk-cpa)
= J⟨Epk1 ,Epk1 ▷R⟩, ⟨Epk1 ,Epk1 ▷R⟩, pk1, pk2K
= ρ3(JEpk1 , pk1K)

‌ ρ3(JE$
pk1

, pk1K) (ind-cpa)

= J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pk2K.

Lemma 5.3.24. (ind-cpa, ik-cpa, sulk-cpa)
1,1,1−−−−→ ind-ik-sulk-cpa.

Proof. As for Lemma 5.3.23, but with

ρ3(JX, xK) .
= J⟨X,X⟩, ⟨X,X⟩, x, pk2K.

Lemma 5.3.25. ind-ik-ulk-cpa 1−→ ind-cpa.

Proof. Let (sk, pk)← Gen and consider ρ(JX,Y, x, yK) .
= J(X)1, xK. Then:

JEpk, pk K ≡ J(Epk ▷ ⟨∗,R⟩)1, pk K
= ρ(JEpk ▷ ⟨∗,R⟩,Epk′ ▷ ⟨∗,R⟩, pk, pk′K)
‌ ρ(J⟨E$

pk,E
$
pk ▷R⟩, ⟨E$

pk,E
$
pk ▷R⟩, pk, pk

′K) (ind-ik-ulk-cpa)

= J⟨E$
pk,E

$
pk ▷R⟩1, pk K

≡ JE$
pk, pk K.

Lemma 5.3.26. ind-ik-ulk-cpa 2−→ ik-cpa.

Proof. Let (sk1, pk1), (sk2, pk2)← Gen, and consider

• ρ1(JX,Y, x, yK) .
= J(X)1, (Y)1, x, yK and
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• ρ2(JX,Y, x, yK) .
= J(X)1, (X)1, x, yK.

Then:

JEpk1 ,Epk2 , pk1, pk2K
≡ J(Epk1 ▷ ⟨∗,R⟩)1, (Epk2 ▷ ⟨∗,R⟩)1, pk1, pk2K
= ρ1(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)
‌ ρ1(J⟨E$

pk1
,E$

pk1
▷R⟩, ⟨E$

pk1
,E$

pk1
▷R⟩, pk1, pk2K) (ind-ik-ulk-cpa)

= J⟨E$
pk1

,E$
pk1

▷R⟩1, ⟨E$
pk1

,E$
pk1

▷R⟩1, pk1, pk2K

= ρ2(J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pk2K)
‌ ρ2(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K) (ind-ik-ulk-cpa)
= J(Epk1 ▷ ⟨∗,R⟩)1, (Epk1 ▷ ⟨∗,R⟩)1, pk1, pk2K
≡ JEpk1 ,Epk1 , pk1, pk2K.

Lemma 5.3.27. ind-ik-ulk-cpa 2−→ ulk-cpa.

Proof. Let (sk, pk), (sk′, pk′)← Gen, and consider

• ρ1(JX,Y, x, yK) .
= JX, xK and

• ρ2(JX,Y, x, yK) .
= J⟨(X)1, (X)1 ▷R⟩, xK.

Then:

JEpk ▷ ⟨∗,R⟩, pk K
= ρ1(JEpk ▷ ⟨∗,R⟩,Epk′ ▷ ⟨∗,R⟩, pk, pk′K)
‌ ρ1(J⟨E$

pk,E
$
pk ▷R⟩, ⟨E$

pk,E
$
pk ▷R⟩, pk, pk

′K) (ind-ik-ulk-cpa)

= J⟨E$
pk,E

$
pk ▷R⟩, pk K

≡ J⟨⟨E$
pk,E

$
pk ▷R⟩1, ⟨E$

pk,E
$
pk ▷R⟩1 ▷R⟩, pk K

= ρ2(J⟨E$
pk,E

$
pk ▷R⟩, ⟨E$

pk,E
$
pk ▷R⟩, pk, pk

′K)

‌ ρ2(JEpk ▷ ⟨∗,R⟩,Epk′ ▷ ⟨∗,R⟩, pk, pk′K) (ind-ik-ulk-cpa)
= J⟨(Epk ▷ ⟨∗,R⟩)1, (Epk ▷ ⟨∗,R⟩)1 ▷R⟩, pk K
≡ J⟨Epk,Epk ▷R⟩, pk K.
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Lemma 5.3.28. ind-ik-sulk-cpa 1−→ ind-cpa.

Proof. Analogous to the proof of Lemma 5.3.25.

Lemma 5.3.29. ind-ik-sulk-cpa 2−→ ik-cpa.

Proof. Analogous to the proof of Lemma 5.3.26.

Lemma 5.3.30. ind-ik-sulk-cpa 2−→ sulk-cpa.

Proof. As for Lemma 5.3.27, but with

ρ2(JX,Y, x, yK) .
= J⟨(X)1, (X)1⟩, xK.

5.3.5 Generalizing the Notions: From 2 to n Receivers
In this section we define the generic notions for n ≥ 2 receivers. Next,
using the abstraction of the hybrid argument via substitutions from
Section 2.3.2, we prove that they are implied by the two-users ones.

Definition 5.3.31 (n-cor-rob).

JLEpk1,...,pkn ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn ,pkK
‌

JIn,pkK,

for (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).

Definition 5.3.32 (n-ind-ik-ulk-cpa).

JEpk1,...,pkn ▷ ⟨∗,R⟩,pkK
‌

JL∗,∗M1 ▷ ⟨E$
pk1

,E$
pk1

▷R⟩,pkK,

for (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).

Definition 5.3.33 (n-ind-ik-sulk-cpa).

JEpk1,...,pkn ▷ ⟨∗,R⟩,pkK
‌

JL∗,∗M1 ▷ ⟨E$
pk1

,E$
pk1
⟩,pkK,

for (sk1, pk1), . . . , (skn, pkn)← Gen and pk
.
= (pk1, . . . , pkn).
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Lemma 5.3.34. (cor, rob)
n,n(n−1)−−−−−−−→ n-cor-rob.

Proof (sketch). This statement can be proven by generalizing (the first
part of) the proof of Lemma 5.3.22. More specifically, the cor substitution
is used n times, essentially to replace calls to Decpki ◦ Rnc

t ◦ Encski by the
identity function, for any i ∈ [n] and t ∈ N, and the rob substitution is
used n(n− 1) times, essentially to replace calls to Decpki ◦ Rnc

t ◦ Encskj
by ⊥, for any i ∈ [n], j ∈ [n]∖ {i}, and t ∈ N.

Lemma 5.3.35. ind-ik-ulk-cpa n−1−−−→ n-ind-ik-ulk-cpa.

Proof. Let (sk1, pk1), . . . , (skn, pkn)← Gen, pk .
= (pk1, . . . , pkn), and con-

sider

• ρ1(JX,Y, x, yK)
.
= JX,Y,Epk3 ▷ ⟨∗,R⟩, . . . ,Epkn ▷ ⟨∗,R⟩, x, y, pk3, . . . , pknK,

and

• ρi(JX,Y, x, yK)
.
= J⟨$ ▷ (X)1,$ ▷ (X)1 ▷R⟩, . . . , ⟨$ ▷ (X)1,$ ▷ (X)1 ▷R⟩︸ ︷︷ ︸

i times

,

Y,Epki+2
▷ ⟨∗,R⟩, . . . ,Epkn ▷ ⟨∗,R⟩,

x, pk2, . . . , pki, y, pki+2, . . . , pknK,

for i = 2, . . . , n− 1.

Note that:

• ρ1(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)

≡ JEpk1 ▷ ⟨∗,R⟩, . . . ,Epkn ▷ ⟨∗,R⟩,pkK,

• ρn−1(J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pknK)

≡ J⟨E$
pk1

,E$
pk1

▷R⟩, . . . , ⟨E$
pk1

,E$
pk1

▷R⟩︸ ︷︷ ︸
n times

,pkK, and

• ρi(J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pki+1K)
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≡ ρi+1(JEpk1 ▷ ⟨∗,R⟩,Epki+2
▷ ⟨∗,R⟩, pk1, pki+2K),

for all i ∈ [n− 2].

Then, since by ind-ik-ulk-cpa we have

JEpk1 ▷ ⟨∗,R⟩,Epki+1
▷ ⟨∗,R⟩, pk1, pki+1K

‌

J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pki+1K,

for any i ∈ [n− 1], by Lemma 2.3.2 it follows that

ρ1(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)
‌

ρn−1(J⟨E$
pk1

,E$
pk1

▷R⟩, ⟨E$
pk1

,E$
pk1

▷R⟩, pk1, pknK).

Therefore, with ρ(JX1, . . . ,Xn,xK) .
= JX′,xK, where X′(m, i)

.
= Si(m),

for i ∈ [n],

JEpk1,...,pkn ▷ ⟨∗,R⟩,pkK
≡ ρ(JEpk1 ▷ ⟨∗,R⟩, . . . ,Epkn ▷ ⟨∗,R⟩,pkK)
≡ ρ ◦ ρ1(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)
‌ ρ ◦ ρn−1(J⟨E$

pk1
,E$

pk1
▷R⟩, ⟨E$

pk1
,E$

pk1
▷R⟩, pk1, pknK)

≡ ρ(J⟨E$
pk1

,E$
pk1

▷R⟩, . . . , ⟨E$
pk1

,E$
pk1

▷R⟩︸ ︷︷ ︸
n times

,pkK)

≡ JL∗,∗M1 ▷ ⟨E$
pk1

,E$
pk1

▷R⟩,pkK.

Lemma 5.3.36. ind-ik-sulk-cpa n−1−−−→ n-ind-ik-sulk-cpa.

Proof. As for Lemma 5.3.35, but with

ρi(JX,Y, x, yK) .
= J⟨$ ▷ (X)1,$ ▷ (X)1⟩, . . . , ⟨$ ▷ (X)1,$ ▷ (X)1⟩︸ ︷︷ ︸

i times

,

Y,Epki+2
▷ ⟨∗,R⟩, . . . ,Epkn ▷ ⟨∗,R⟩,

x, pk2, . . . , pki, y, pki+2, . . . , pknK.
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5.4 Composable Semantics of URE

The goal of this section is to define security of universal re-encryption
from an application point of view. We do so using the framework of con-
structive cryptography (CC) [MR11, Mau12] as introduced in Section 2.4.
Previously, composable semantics of other cryptographic schemes with
anonymity properties have been considered in CC: anonymous PKE
[KMO+13], anonymous (probabilistic) MACs [AHM+15], anonymous
(probabilistic) symmetric-key encryption and authenticated encryption
[BM20], as presented in Chapter 3, and three kinds of anonymous signa-
ture schemes [BM22], as presented in Chapter 4. The common thread
for all these four works, is that the statements shown exclusively cap-
ture anonymity preservation. More precisely, all statements show that a
certain scheme realizes some ideal resource that captures some kind of
security in conjunction with anonymity, if used with an assumed resource
that captures a weaker form of security (than the kind captured by the
ideal resource) but already in conjunction with anonymity. Even more
concretely, recall for example how in Chapter 3 [BM20] we have shown
that anonymous and IND-CPA (probabilistic) symmetric-key encryption,
from an authenticated anonymous channel (plus a resource modeling a
shared secret key), constructs a secure (that is, both authenticated and
confidential) anonymous channel.

In this chapter, we show (for the first time) a construction that
potentially captures the creation of anonymity. We will assume resources
that explicitly leak the identity of senders and receivers, and therefore, if
used naively, trivially allow to link senders to receivers. Using URE, we
are able to construct, from such assumed resources, and ideal resource
that leaks the identities, but hides the links between senders and receivers.
Therefore, under certain circumstances (that is, the traffic from senders
to receivers is “large”), such ideal resource also guarantees anonymity of
both senders and receivers.

We consider the simple case of a single honest mixer between the
senders and the receivers, where senders authentically send ciphertexts to
the mixer, which re-encrypts each stored ciphertext on each new input,
and where receivers fetch the list of all ciphertexts from the mixer, decrypt
the ones meant for them, and finally tell the mixer which ciphertexts are
to be deleted.
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5.4.1 Assumed and Ideal Resources

In this chapter we deviate slightly from the modeling of communication
channels adopted in the previous two chapters. More specifically, for
the assumed resources we make the simplifying assumption of a passive
adversary that can only eavesdrop, but cannot control communication, that
is, can neither drop, nor reorder, nor replay messages. Put in other words,
messages input by honest parties are instantly delivered. On the other
hand, we now consider channels with both multiple senders and multiple
receivers. More precisely, with senders set S, receivers set R, mixer M
and adversary E, we consider P-resources with P = S ∪ R ∪ {M,E},
where S, R, and {M,E} are pairwise disjoint. Let the honest parties set
by H .

= S ∪ R ∪ {M}, and for a set S, let 2S denote its power set, that
is, 2S .

= {S ′ | S ′ ⊆ S}. We describe such resources for A,B ⊆ H, and sets
X ∈ {PK, C, {⋄} ∪ 2C} and M defined by a fixed URE scheme ΠURE.

We begin by defining the assumed non-anonymous resources: the
single-use authenticated channel 1-AUTXA→B, the (multi-use) authenti-
cated channel AUTXA→B, and the bi-directional (multi-use) authenticated
channel AUTXA↔B. Since we are now considering multiple senders and
receivers at the same time, input messages are always accompanied by a
recipient, and since we are now considering non-anonymous channels, the
sender and receiver identities will always be leaked to the eavesdropping
adversary. Moreover, unlike in the previous two chapters, here we use
the names of the sender and receiver sets in the names of the channel
resources, rather than their cardinalities.

Definition 5.4.1 (1-AUTXA→B, AUTXA→B, AUTXA↔B). For A ∈ A, we
define the resource AUTXA→B as follows:

• On input (x,B) ∈ X ×B at interface A, output (A, x,B) at interface
E and (A, x) at interface B.

For the resource 1-AUTXA→B, interface A becomes inactive after the first
input. For B ∈ B, for the resource AUTXA↔B we additionally have:

• On input (x,A) ∈ X ×A at interface B, output (B, x,A) at interface
E and (B, x) at interface A.

If A (or B) is singleton set A = {A}, we use A instead of A as superscript.
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Next, we define the ideal resource that URE realizes: the unlinkable
communication channel ULKXS→R. Intuitively, this channel allows senders
to input messages for receivers and receivers to retrieve messages meant
for them, but in such a way that the adversary cannot link these actions
together. More precisely, ULKXS→R allows a sender S ∈ S to input a value
x ∈ X addressed to some receiver R ∈ R, so that the adversary only sees
that S input something, neither what nor to whom, and subsequently,
receiver R can query the channel for messages addressed to her, but again
so that the adversary only sees that R fetched something, neither what
nor from whom.

Definition 5.4.2 (ULKXS→R). For S ∈ S and R ∈ R, we define the
resource ULKXS→R as follows: Initially set M ← [ ], and then:

• On input (x,R) ∈ X × R at interface S, output S at interface E

and set M [R]
∪← {x}.

• On input ⋄ at interface R, first output (R, |M [R]|) at interface E,
and then output M [R] at interface R and set M [R]← ∅.

5.4.2 Main Result: Single Honest Mixer

We now show that if a URE scheme satisfies both n-cor-rob and n-ind-
ik-sulk-cpa, then it also securely constructs the resource ULKMS→R, if
appropriately used in conjunction with resources 1-AUTPKR→S , AUT

C
S→M ,

and AUT
{⋄}∪2C
M↔R . For this, we need to first describe the behavior of the

protocol πURE, implicitly parameterized by a generic URE scheme ΠURE,
when attached to such resources composed in parallel. On a high level, the
protocol allows a sender to input a message addressed to a specific receiver,
and sends its encryption to the mixer via AUTCS→M . The encryption is
performed using the receiver public key, which the sender received through
1-AUTPKR→S . The mixer keeps all ciphertexts in a buffer, and whenever it
receives a new ciphertext, it re-encrypts every ciphertext in the buffer,
as well as the new one, which it then adds to the buffer. Note that the
mixer does not know to whom the ciphertexts are addressed, but since
re-encryption is universal, it does not need a public key to perform this
operation. Finally, a receiver can query the mixer via AUT

{⋄}∪2C
M↔R for all

stored ciphertexts, trial decrypt those addressed to her, and instruct the
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mixer to remove them from the buffer. A formal description of πURE

follows.

Definition 5.4.3 (πURE). For H .
= S ∪R ∪ {M}, the H-protocol πURE

using a URE scheme ΠURE
.
= (Gen, Enc, Rnc, Dec) is composed by the

local converters enc, attached to an interface S ∈ S, dec, attached to an
interface R ∈ R, and rnc, attached to interface M . They are defined as
follows:

• enc: Upon initialization, for each R ∈ R obtain (R, pkR) from
1-AUTPKR→S though interface in, and then on input (m,R) ∈M×R
at interface out, get c← EncpkR(m) and input (c,M) to AUTCS→M

though interface in.

• rnc: Upon initialization, set B ← ∅, and then:

– On input (S, c) from AUTCS→M through interface in:

1. Set B′ ← ∅, and then for each c′ ∈ B get ĉ′ ← Rnc(c′) and
set B′ ∪← {ĉ}. Then set B ← B′.

2. Get ĉ← Rnc(c) and set B ∪← {ĉ}.

– On input (R, ⋄) from AUT
{⋄}∪2C
M↔R through interface in, input

(B, R) to AUT
{⋄}∪2C
M↔R through interface in.

– On input (R,OR) from AUT
{⋄}∪2C
M↔R through interface in, set

B ∖← OR.

• dec: Upon initialization, get (skR, pkR) ← Gen, input (pkR, S) to
1-AUTPKR→S through interface in for each S ∈ S, and then on input
⋄ at interface out:

1. Input ⋄ to AUT
{⋄}∪2C
M↔R through interface in.

2. On input (M,B) from AUT
{⋄}∪2C
M↔R through interface in, set

OE ,OR ← ∅, and then for each c ∈ B get m ← DecskR(c),
and if m ̸= ⊥, set OE

∪← {c} and OR
∪← {m}.

3. Input OE to AUT
{⋄}∪2C
M↔R through interface in.

4. Output OR at interface out.
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ρ1(JS,pkK)

Initialize:
B,D ← ∅
for i ∈ [n] do

for S ∈ S do
out(out; (Ri, pki, S))

Interface S(m,Ri): // S ∈ S
(B,D)← Rnc(B,D)
c← Encpki(m)
out(E; (S, c,M))
ĉ← Rnc(m)

B ∪← {ĉ}; D ∪← {(i,m, 1)}
Interface Ri(⋄): // i ∈ [n]

OE ,OR,D′ ← ∅
out(E; (Ri, ⋄,M))
out(E; (M,B, Ri))
for (j,m, t) ∈ D do

m← S(j,m, t, i)
if m ̸= ⊥ then

OE
∪← {ĉ}

OR
∪← {m}

D′ ∪← {(j,m, t)}
B ∖← OE ; D

∖← D′
out(E; (Ri,OE ,M))
out(Ri;OR)

func Rnc(B,D):
B′,D′ ← ∅
for c ∈ B do

ĉ← Rnc(c)

B′ ∪← {ĉ}
for (i,m, t) ∈ D do
D′ ∪← {(i,m, t+ 1)}

return (B′,D′)

ρ2(JS,pkK)

Initialize:
B ← ∅
M,C ← [ ]
for i ∈ [n] do

for S ∈ S do
out(out; (Ri, pki, S))

Interface S(m,Ri): // S ∈ S
B ← Rnc(B,M)
(c, ĉ)← S(i,m)
out(E; (S, c,M))

B ∪← {ĉ}
M [i]

∪← {m}
C[(i,m)]← ĉ

Interface Ri(⋄): // i ∈ [n]
OE ,OR ← ∅
out(E; (Ri, ⋄,M))
out(E; (M,B, Ri))
for m ∈M [i] do

OE
∪← {ĉ}

OR ←M [i]
M [i]← ∅
B ∖← OE

out(E; (Ri,OE ,M))
out(Ri;OR)

func Rnc(B,M):
B′ ← ∅
for i ∈ [n] do

for m ∈M [i] do
c← C[(i,m)]
ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

Figure 5.4: Transformations for the proof of Theorem 5.4.4.
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σ

Initialize:
B ← ∅
m̃ $←M
for i ∈ [n] do

(ski, pki)← Gen
for S ∈ S do

out(out; (Ri, pki, S))
Interface in(S):
B ← Rnc(B)
c← Encpk1(m̃)
out(out; (S, c,M))
ĉ← Encpk1(m̃)

B ∪← {ĉ}
Interface in(Ri, ℓ):

OE ← ∅
out(out; (Ri, ⋄,M))
out(out; (M,B, Ri))
OE

$← {A ⊆ B : |A| = ℓ}
B ∖← OE

out(out; (Ri,OE ,M))

func Rnc(B):
B′ ← ∅
for c ∈ B do

ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

H0

Initialize:
B ← ∅
for i ∈ [n] do

(ski, pki)← Gen
for S ∈ S do

out(E; (Ri, pki, S))
Interface S(m,Ri): // S ∈ S
B ← Rnc(B)
c← Encpki(m)
out(E; (S, c,M))
ĉ← Rnc(m)

B ∪← {ĉ}
Interface Ri(⋄): // i ∈ [n]

OE ,OR ← ∅
out(E; (Ri, ⋄,M))
out(E; (M,B, Ri))
for ĉ ∈ B do

m← Decski(ĉ)
if m ̸= ⊥ then

OE
∪← {ĉ}

OR
∪← {m}

B ∖← OE

out(E; (Ri,OE ,M))
out(R;OR)

func Rnc(B):
B′ ← ∅
for c ∈ B do

ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

Figure 5.5: Simulator and hybrid H0 for the proof of Theorem 5.4.4.
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H1 H2

Initialize:
B ← ∅; M,C ← [ ] ; m̃ $←M
for i ∈ [n] do

(ski, pki)← Gen
for S ∈ S do

out(E; (Ri, pki, S))
Interface S(m,Ri): // S ∈ S
B ← Rnc(B,M)

c← Encpki(m)

c← Encpk1(m̃)

out(E; (S, c,M))
ĉ← Rnc(m) ; ĉ← Encpk1(m̃)

B ∪← {ĉ}
M [i]

∪← {m}; C[(i,m)]← ĉ

Interface Ri(⋄): // i ∈ [n]
OE ,OR ← ∅
out(E; (Ri, ⋄,M))
out(E; (M,B, Ri))
for m ∈M [i] do

OE
∪← {ĉ}

OR ←M [i]; M [i]← ∅
B ∖← OE

out(E; (Ri,OE ,M))
out(R;OR)

func Rnc(B,M):
B′ ← ∅
for i ∈ [n] do

for m ∈M [i] do
c← C[(i,m)]

ĉ← Rnc(c); B′ ∪← {ĉ}
return B′

H3

Initialize:
B ← ∅
M ← [ ]
m̃ $←M
for i ∈ [n] do

(ski, pki)← Gen
for S ∈ S do

out(E; (Ri, pki, S))
Interface S(m,Ri): // S ∈ S
B ← Rnc(B)
c← Encpk1(m̃)
out(E; (S, c,M))
ĉ← Encpk1(m̃)

B ∪← {ĉ}
M [i]

∪← {m}
Interface Ri(⋄): // i ∈ [n]

OE ,OR ← ∅
out(E; (Ri, ⋄,M))
out(E; (M,B, Ri))
ℓ← |OR|
OE

$← {A ⊆ B : |A| = ℓ}
OR ←M [i]
M [i]← ∅
B ∖← OE

out(E; (Ri,OE ,M))
out(R;OR)

func Rnc(B):
B′ ← ∅
for c ∈ B do

ĉ← Rnc(c)

B′ ∪← {ĉ}
return B′

Figure 5.6: Hybrids H1–H3 for the proof of Theorem 5.4.4.
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Finally, we can now show that the protocol πURE, and therefore the
underlying URE scheme ΠURE, is composably secure.

Theorem 5.4.4. With n
.
= |R|,[

1-AUTPKR→S ,AUT
C
S→M ,AUT

{⋄}∪2C
M↔R

]
pπURE;n-cor-rob,n-ind-ik-sulk-cpa
===================⇒ ULKMS→R.

Proof. Let n
.
= |R|, (sk1, pk1), . . . , (skn, pkn) ← Gen, and pk

.
= (pk1, . . . ,

pkn). Assume R = {R1, . . . , Rn}, and let pki
.
= pkRi

, for i ∈ [n]. We also
assume that i is retrievable from Ri. Define ρ1, ρ2, and σ as in Figures 5.4
and 5.5, and also define hybrid resources H0 to H3 as in Figures 5.5
and 5.6, where changes from the previous hybrid are highlighted in dark
gray. Then:

πURE

[
1-AUTPKR→S ,AUT

C
S→M ,AUT

{⋄}∪2C
M↔R

]
≡ H0 (monolithic representation)
≡ ρ1(JLEpk1,...,pkn ,∗,∗M ▷ LR∗,∗M ▷Dsk1,...,skn ,pkK) (by inspection)
‌ ρ1(JIn,pkK) (n-cor-rob)
≡ H1 (by inspection)
= ρ2(JEpk1,...,pkn ▷ ⟨∗,R⟩,pkK)

‌ ρ2(JL∗,∗M1 ▷ ⟨E$
pk1

,E$
pk1
⟩,pkK) (n-ind-ik-sulk-cpa)

= H2

≡ H3 (by inspection)
≡ σULKS→R. (monolithic representation)

5.4.3 When Does Unlinkability Imply Anonymity?
Note that, as discussed before, unlikability only implies anonymity under
certain circumstances. In fact, if right after initialization a sender S
sends a message m to a receiver R through ULKMS→R, and right after
that, R fetches its messages, then an eavesdropping adversary E will learn
that indeed the sender was S, the receiver was R, and will clearly also
link the two actions together. In particular, this means that E can link
the sender to a specific ciphertext it saw, and we want to understand
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when this becomes impossible to do for E. Therefore, a natural question
is, under what circumstances does ULKMS→R provide anonymity of the
senders? Consider now the case where, right after initialization, the
following sequence of actions takes place: (1) sender S0 sends message
m0 to receiver R0, (2) sender S1 sends message m1 to receiver R1, (3) R0

fetches its messages, and (4) R1 fetches its messages. Now, the guarantee
provided by ULKMS→R is that E cannot link any of the two senders to
any of the two receivers, that is, E will be unable to distinguish the case
that Si sent to Ri from the case that Si sent to R1−i, for i ∈ {0, 1}. This
implies that now E cannot link any ciphertext it sees to neither S0 nor
S1. Moreover, after those four actions take place, that is, after the set M
kept by ULKMS→R is empty again, the state of anonymity is equivalent to
the one right after initialization. Therefore, to answer the above question,
senders are guaranteed to be anonymous among the set of senders that
sent messages since the last time that M was not empty.

5.5 ElGamal-Based Universal Re-Encryption

In this section we fix a cyclic group G = ⟨g⟩ of order q
.
= |G| with

generator g ∈ G.

5.5.1 Decisional Diffie-Hellman Assumption

We can base all results of this chapter on a single assumption, that
we also define as a substitution. The decisional Diffie-Hellman (DDH)
problem for G states that it is hard to distinguish triplets of the form
(gα, gβ , gαβ) ∈ G3, for α, β $← Zq, from triplets of the form (gα, gβ , gγ) ∈
G3, for α, β, γ $← Zq. To formalize this assumption as a substitution, we
define the following systems.

Definition 5.5.1 (DDH Systems).

• Sddh
0 : on input ⋄, output (gα, gβ , gαβ) ∈ G3, for α, β $← Zq (only

once).

• Sddh
1 : on input ⋄, output (gα, gβ , gγ) ∈ G3, for α, β, γ $← Zq (only

once).
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We can now capture such assumption as a substitution, and conse-
quently treat it as a notion which we can relate to other security notions,
for a specific scheme based on DDH.

Definition 5.5.2 (ddh). Sddh
0 ‌ Sddh

1 .

5.5.2 Security of ElGamal-Based URE Scheme

We now define the concrete ElGamal-based URE scheme introduced by
Golle et al. [GJJS04] (that is, we specify a concrete instantiation of
Definition 5.2.3), and then prove that it satisfies all our notions. In our
proofs we will use common re-randomization techniques, as introduced for
example in [BBM00], in order to be able to use a single DDH instance to
simulate encryption of many messages, both under a public key defined
by such instance and an independent one.

Definition 5.5.3. ΠURE-ElGamal = (Gen, Enc, Rnc, Dec), with private-key
space SK .

= Zq, public-key space PK .
= G, message space1 M = G, and

ciphertext space C .
= G4, is defined as follows:

• Gen() .
= (sk, gsk), for sk $← Zq.

• Encpk(m)
.
= (m · pkκ0 , gκ0 , pkκ1 , gκ1), for κ0, κ1

$← Zq.

• Rnc((α0, β0, α1, β1))
.
= (α0α

κ′
0

1 , β0β
κ′
0

1 , α
κ′
1

1 , β
κ′
1

1 ), for κ′0, κ
′
1

$← Zq.

• Decsk((α0, β0, α1, β1))
.
=

{
α0/β

sk
0 if α1/β

sk
1 = 1,

⊥ otherwise.

In the following we understand the systems from Definition 5.2.4 as
being implicitly parameterized on ΠURE-ElGamal.

Lemma 5.5.4. corΠURE-ElGamal holds unconditionally.

Proof. Let (m, t) ∈ G × N. Then, for κ0
0, κ

0
1, κ

1
0, κ

1
1, . . . , κ

t
0, κ

t
1

$← Zq,
(sk, pk) ← Gen, σ .

=
∑t

i=0 κ
i
0

∏i−1
j=0 κ

j
1, and ω

.
=

∏t
i=0 κ

i
1, on input (m, t)

1 Note that in Definition 5.2.3 we specified that M .
= {0, 1}κ, for some κ ∈ N,

whereas here we consider group elements, rather than bitstrings. Since message should
have the same length, we implicitly assume some padding takes place (e.g., via hashing).
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the system JLEpk,∗M ▷R∗ ▷Dsk, pk K will output

Decsk(Rnc
t(Encpk(m))) = Decsk(Rnc

t((m · pkκ0 , gκ0 , pkκ1 , gκ1)))

= Decsk((m · pkσ, gσ, pkω, gω))
= m · pkσ/gσ·sk

= m · gsk·σ/gσ·sk

= m,

since pkω/gω·sk = gsk·ω/gω·sk = 1. Therefore,

JLEpk,∗M ▷R∗ ▷Dsk, pk K ≡ JL∗,∗M1, pk K.

Lemma 5.5.5. robΠURE-ElGamal holds unconditionally with probability 1
q .

Proof. Let (m, t) ∈ G × N. Then, for κ0
0, κ

0
1, κ

1
0, κ

1
1, . . . , κ

t
0, κ

t
1

$← Zq,
(sk1, pk1), (sk2, pk2) ← Gen, σ .

=
∑t

i=0 κ
i
0

∏i−1
j=0 κ

j
1, and ω

.
=

∏t
i=0 κ

i
1, on

input (m, t) the system JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K will output

Decsk2(Rnc
t(Encpk1(m))) = Decsk2(Rnc

t((m · pkκ0
1 , gκ0 , pkκ1

1 , gκ1)))

= Decsk2((m · pk
σ
1 , g

σ, pkω1 , g
ω))

= ⊥,

since pkω1 /gω·sk2 = gsk1·ω/gω·sk2 = 1 if and only if sk1 = sk2, which
happens with probability 1

q . Therefore,

JLEpk1 ,∗M ▷R∗ ▷Dsk2 , pk1, pk2K ≈ 1
q

J⊥⊥⊥, pk1, pk2K.

Lemma 5.5.6. ddh 1−→ ind-cpaΠURE-ElGamal .

Proof. Consider ρ(X) ≡ JX′, pk K, which initially inputs ⋄ to X, obtains
(x, y, z), sets pk .

= x, and with system X′ behaving as follows: On input
m ∈ G, get u, v, κ1

$← Zq and output (m · zuxv, yugv, xκ1gκ1 , gκ1). Then:

• ρ(Sddh
0 ) ≡ JEpk, pk K: We have that (x, y, z) = (gα, gβ , gαβ), for

α, β $← Zq, hence with sk .
= α and κ0

.
= βu+ v we get

(m · zuxv, yugv, xκ1gκ1 , gκ1) = (m · gαβu+αv, gβu+v, gακ1 , gκ1)

= (m · gα(βu+v), gβu+v, gακ1 , gκ1)

= (m · pkκ0 , gκ0 , pkκ1 , gκ1),

which is distributed exactly as the output of Epk on input m.
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• ρ(Sddh
1 ) ≡ JE$

pk, pk K: We have that (x, y, z) = (gα, gβ , gγ), for
α, β, γ $← Zq, hence with sk .

= α, κ0
.
= βu+v, and m̃

.
= m ·gu(γ−αβ)

(thus, m̃ $← G) we get

(m · zuxv, yugv, xκ1gκ1 , gκ1)

= (m · gγu+αv+(αβu−αβu), gβu+v, gακ1 , gκ1)

= (m · gu(γ−αβ) · gα(βu+v), gβu+v, gακ1 , gκ1)

= (m̃ · pkκ0 , gκ0 , pkκ1 , gκ1),

which is distributed exactly as the output of E$
pk on input m.

Therefore, JEpk, pk K ≡ ρ(Sddh
0 ) ‌ ρ(Sddh

1 ) ≡ JE$
pk, pk K.

Lemma 5.5.7. ddh 2−→ ik-cpaΠURE-ElGamal .

Proof. For i ∈ {1, 2}, consider ρi(X) ≡ JEpk1 ,X
′, pk1, pk2K, which initially

inputs ⋄ to X, obtains (x1, y1, z1), sets (x2, y2, z2)← (x1 · ga, yc1 · gb, zc1 ·
xb
1 · yac1 · gab), for a, b, c $← Zq, pk1

.
= x1, pk2

.
= x2, and with system X′

behaving as follows: On input m ∈ G, get u, v, κ1
$← Zq and output

(m · zui xv
i , y

u
i g

v, xκ1
i gκ1 , gκ1). Then,

• ρ1(S
ddh
0 ) ≡ JEpk1 ,Epk1 , pk1, pk2K: We have that (x1, y1, z1) =

(gα, gβ , gαβ), for α, β $← Zq, hence with sk1
.
= α and κ0

.
= βu + v

we get

(m · zu1xv
1, y

u
1 g

v, xκ1
1 gκ1 , gκ1) = (m · gαβu+αv, gβu+v, gακ1 , gκ1)

= (m · gα(βu+v), gβu+v, gακ1 , gκ1)

= (m · pkκ0
1 , gκ0 , pkκ1

1 , gκ1),

which is distributed exactly as the output of Epk1 on input m.

• ρ1(S
ddh
0 ) ≡ JEpk1 ,Epk2 , pk1, pk2K: We have that (x2, y2, z2) =

(gα
′
, gβ

′
, gα

′β′
), for α′, β′ $← Zq (because α′

.
= α + a, β′

.
= βc + b,

and α, β, a, b, c $← Zq), hence with sk2
.
= α′ and κ0

.
= βu+ v we get

(m · zu2xv
2, y

u
2 g

v, xκ1
2 gκ1 , gκ1) = (m · gα

′β′u+α′v, gβ
′u+v, gα

′κ1 , gκ1)

= (m · gα
′(β′u+v), gβ

′u+v, gα
′κ1 , gκ1)

= (m · pkκ0
2 , gκ0 , pkκ1

2 , gκ1),
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which is distributed exactly as the output of Epk2 on input m.

• ρ1(S
ddh
1 ) ≡ ρ2(S

ddh
1 ): We have that (x1, y1, z1) = (gα, gβ , gγ) and

(x2, y2, z2) = (gα
′
, gβ

′
, gγ

′
), for α, β, γ $← Zq and α′

.
= α + a, β′

.
=

βc + b, γ′
.
= γc + αb + βac + ab. Hence, α′, β′, γ′ $← Zq, which

implies that (x1, y1, z1) and (x2, y2, z2) are identically distributed,
thus ρ1(S

ddh
1 ) and ρ2(S

ddh
1 ) have the same behavior.

Therefore,

JEpk1 ,Epk1 , pk1, pk2K ≡ ρ1(S
ddh
0 )

‌ ρ1(S
ddh
1 ) (ddh)

≡ ρ2(S
ddh
1 )

‌ ρ2(S
ddh
0 ) (ddh)

≡ JEpk1 ,Epk2 , pk1, pk2K.

Lemma 5.5.8. ddh 2−→ ulk-cpaΠURE-ElGamal .

Proof. For i ∈ {1, 2}, consider ρi(X) ≡ JX′, pk K, which initially inputs
⋄ to X, obtains (x, y, z), sets pk .

= x, and with system X′ behaving
as follows: On input m ∈ G, get u, v, κ1, u

′, v′, κ′1
$← Zq, and set c1

.
=

(m·zuxv, yugv, xκ1gκ1 , gκ1) and c′2
.
= (m·zu′

xv′
, yu

′
gv

′
, xκ′

1gκ
′
1 , gκ

′
1). Then

set c2
.
= c1, ĉ1

.
= Rnc(c1), and ĉ2

.
= Rnc(c′2). Finally, output (ci, ĉi). Then:

• ρ1(S
ddh
0 ) ≡ JEpk ▷ ⟨∗,R⟩, pk K: As we already showed in the proof

of Lemma 5.5.6, if (x, y, z) = (gα, gβ , gαβ), for α, β $← Zq, then
(m · zuxv, yugv, xκ1gκ1 , gκ1) is distributed exactly as the output of
Epk on input m, therefore (c1, ĉ1) is distributed exactly as the output
of Epk ▷ ⟨∗,R⟩ on input m.

• ρ2(S
ddh
0 ) ≡ J⟨Epk,Epk ▷R⟩, pk K: As we already showed in the proof

of Lemma 5.5.6, if (x, y, z) = (gα, gβ , gαβ), for α, β $← Zq, then
(m · zuxv, yugv, xκ1gκ1 , gκ1) and (m · zu′

xv′
, yu

′
gv

′
, xκ′

1gκ
′
1 , gκ

′
1) are

independent and both distributed exactly as the output of Epk on
input m, therefore (c2, ĉ2) is distributed exactly as the output of
⟨Epk,Epk ▷R⟩ on input m.

• ρ1(S
ddh
1 ) ≡ ρ2(S

ddh
1 ): We have that (x, y, z) = (gα, gβ , gγ), for

α, β, γ $← Zq, which implies that (c1, ĉ1) and (c2, ĉ2) are identically
distributed, thus ρ1(S

ddh
1 ) and ρ2(S

ddh
1 ) have the same behavior.
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Therefore,

JEpk ▷ ⟨∗,R⟩, pk K ≡ ρ1(S
ddh
0 )

‌ ρ1(S
ddh
1 ) (ddh)

≡ ρ2(S
ddh
1 )

‌ ρ2(S
ddh
0 ) (ddh)

≡ J⟨Epk,Epk ▷R⟩, pk K.

Lemma 5.5.9. ddh 2−→ sulk-cpaΠURE-ElGamal .

Proof. Similar to the proof of Lemma 5.5.8.

We can now reduce the security of the construction all the way down
to a single assumption, ddh. For this, first note that by combining
Lemmata 5.5.4, 5.5.5 and 5.3.34, we obtain the following result.

Corollary 5.5.10. n-cor-robΠURE-ElGamal holds unconditionally with proba-
bility n(n−1)

q .

Moreover, by combining Lemmata 5.5.6, 5.5.7, 5.5.9, 5.3.24 and 5.3.36,
we obtain the following result.

Corollary 5.5.11. ddh
5(n−1)−−−−−→ n-ind-ik-sulk-cpaΠURE-ElGamal .

Finally, Corollaries 5.5.10 and 5.5.11 imply the following result.

Corollary 5.5.12.[
1-AUTPKR→S ,AUT

C
S→M ,AUT

{⋄}∪2C
M↔R

]
p πURE; ddh
=======⇒ ULKMS→R.





Chapter 6

Conclusion

In this thesis we continued the important task of expanding the library of
construction statements in constructive cryptography, specifically by filling
gaps in the composable treatment of schemes designed with anonymity-
focused applications in mind. As a result, we have gained a deeper
understanding of the practical applications of these schemes and the
essential security notions required for their effective utilization. Along the
way, we also introduced a new framework for reasoning about security
notions, which lends itself as a unifier of game-based and composable
notions. We next discuss in more details our results and some open
problems.

The Substitutions Framework. In Chapter 2, we put forth the frame-
work of substitutions, which we consistently used throughout the thesis
to define and relate security notions, both game-based and composable
ones. This abstract framework allowed us to greatly simplify proofs, that
if otherwise carried out in one of the conventional languages commonly
used in the cryptographic literature, would have potentially been longer,
less formal, and more prone to contain gaps.

Being for the most part algebraic, our framework potentially enables
the automated verification, which is an interesting open problem. We
hope that our framework spark interest in the cryptographic and sees
adoption outside of the scope of this thesis.

Secret-Key Anonymity Preservation. In Chapter 3, we focused on
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filling a gap in the composable treatment of anonymity preservation in the
secret-key setting. We began by casting key-indistinguishability notions
for symmetric-key encryption from the literature into our substitution
framework, and we also proposed new notions capturing anonymity for
authenticated encryption. We then verified with a composable analysis,
that indeed such notions capture anonymity preservation.

We focused on the case of many senders and a single receiver. A
natural follow-up would be the study of the dual case of a single sender
and multiple receivers.

Public-Key Anonymity Preservation. In Chapter 4, we focused on
filling a gap in the composable treatment of anonymity preservation in the
public-key setting. This gap proved more challenging to fill, since we begun
with an impossibility result. We then identified three possible alternative
approaches to fill the gap, ranging from anonymous authenticity, through
de-anonymizable authenticity, to receiver-side anonymous authenticity.
For the first, we used a new type of schemes, bilateral signatures, for
the second we used partial signatures, and for the latter we used ring
signatures.

Since the scope of this work was very ample, we see it as merely paving
the way. For example, additional alternative solutions circumventing our
impossibility result, employing different schemes, might be interesting
to analyze. Moreover, all of our results hold under static corruptions,
therefore a natural extension would be to consider a stronger security
model capturing adaptive corruptions. This would allow to rely on stronger
game-based notions from the literature for partial signatures and ring
signatures.

Anonymity Creation. Finally, in Chapter 5 we shifted our focus from
the preservation of anonymity to its creation (in the public-key setting).
We did so by first identifying the minimal game-based definitions of
universal re-encryption (URE) that truly capture its essence, which we
established to be unlinkability, a property that was previously entangled
with confidentiality and key-indistinguishability. We then attested this by
providing composable semantics for URE, where we showed that indeed
the careful use of this scheme yields an unlinkable network, which enables
anonymous communication, under the right circumstances.

We only considered the case of a single honest mixer, and left open
the problem to consider more, and potentially dishonest ones.
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Details of Chapter 3

A.1 Weak Robustness
Recall the cascading operator ▷ for systems defined informally in Sec-
tion 3.2.3 (and also formally defined later in Definition 5.2.2). Then, weak
robustness (wrob) for authenticated encryption is simply defined as the
substitution

Ek1
▷Dk2

‌ ⊥⊥⊥

for k1, k2 ← Gen, and where the system ⊥⊥⊥ always outputs ⊥ (also formally
defined later in Definition 5.2.1). Now, to see that indeed 2-ik-ae implies
wrob, consider

ρ(JJX1,Y1K, JX2,Y2KK)
.
= X1 ▷Y2.

Then:

Ek1
▷Dk2

= ρ([JEk1
,Dk1

K, JEk2
,Dk2

K])
‌ ρ(Jρae(Ek1

), ρae(Ek1
)K) (2-ik-cca)

≡⊥⊥⊥, (A.1)

where we next justify equation (A.1). The system ρ(Jρae(Ek1), ρ
ae(Ek1)K)

internally keeps a set Q1 ⊆M× C for the first instance of ρae(Ek1) and
a set Q2 ⊆ M × C for the second instance of ρae(Ek1

), but only Q1

is updated after each new query to ρ(Jρae(Ek1
), ρae(Ek1

)K), whereas Q2
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always remains empty. Therefore, on input a message m, the system
ρ(Jρae(Ek1

), ρae(Ek1
)K) checks whether a certain pair (m′, c′) in contained

in Q2, but since the set is always empty, the check will always fail and
therefore the decryption oracle emulated by the second instance of ρae(Ek1

)
will always output ⊥, and so will ρ(Jρae(Ek1), ρ

ae(Ek1)K).
Using Lemma 2.3.2, this result can be easily generalized to any n ∈ N.



Appendix B

Details of Chapter 5

B.1 Relations to Young and Yung’s Notions

In this section we bridge the gap between our security notions ind-cpa,
ik-cpa, ind-r-cpa, and ik-r-cpa, and the corresponding notions introduced
by Young and Yung [YY18]. They phrase their four notions as single-
challenge, left-or-right, bit-guessing problems. On the other hand, out
notions are phrased as multi-challenge, real-or-random, distinction prob-
lems (abstracted as substitutions). It is trivial to transform a (uniform)
bit-guessing problem into a distinction one, as well as relating a single-
challenge to a multi-challenge one. Here we show that the equivalent
multi-challenge distinction-based left-or-right notions of Young and Yung
are equivalent to our real-or-random ones.

Another gap between our notions and Young and Yung’s, which
is unbridgeable, is that in their model the adversary can choose the
randomness given to the encryption oracles. This could easily integrated
in our setting, but we decided not to in order to keep the treatment
self-contained.

B.1.1 Young and Yung’s Original Notions.

Definition B.1.1 (lor-ind-cpa).

JL∗,∗M1 ▷Epk, pk K ‌ JL∗,∗M2 ▷Epk, pk K,
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for (sk, pk)← Gen.

Definition B.1.2 (lor-ik-cpa).

JEpk1 , pk1, pk2K ‌ JEpk2 , pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

Definition B.1.3 (lor-ind-r-cpa).

JLEpk ▷ ⟨∗,R⟩,EpkM, pk K ‌ JLEpk,Epk ▷ ⟨R,∗⟩M, pk K,

for (sk, pk)← Gen.

Definition B.1.4 (lor-ik-r-cpa).

J⟨Epk1 ▷ ⟨∗,R⟩,Epk2⟩, pk1, pk2K ‌ J⟨Epk1 ,Epk2 ▷ ⟨R,∗⟩⟩, pk1, pk2K,

for independent (sk1, pk1)← Gen and (sk2, pk2)← Gen.

B.1.2 Equivalence of the Notions.

Lemma B.1.5. lor-ind-cpa ⇐⇒ ind-cpa.

Proof.

• lor-ind-cpa 1−→ ind-cpa: Let (sk, pk)← Gen and consider ρ(JX, xK) .
=

J⟨∗,$⟩ ▷X, xK. Then:

JEpk, pk K ≡ J⟨∗,$⟩ ▷ L∗,∗M1 ▷Epk, pk K
= ρ(JL∗,∗M1 ▷Epk, pk K)
‌ ρ(JL∗,∗M2 ▷Epk, pk K) (lor-ind-cpa)
= J⟨∗,$⟩ ▷ L∗,∗M2 ▷Epk, pk K

≡ JE$
pk, pk K.

• ind-cpa 2−→ lor-ind-cpa: Let (sk, pk)← Gen and consider ρi(JX, xK) .
=
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JL∗,∗Mi ▷X, xK, for i ∈ {1, 2}. Then:

JL∗,∗M1 ▷Epk, pk K = ρ1(JEpk, pk K)

‌ ρ1(JE$
pk, pk K) (ind-cpa)

= JL∗,∗M1 ▷E$
pk, pk K

≡ JL∗,∗M2 ▷E$
pk, pk K

= ρ2(JE$
pk, pk K)

‌ ρ2(JEpk, pk K) (ind-cpa)
≡ JL∗,∗M2 ▷Epk, pk K.

Lemma B.1.6. lor-ik-cpa ⇐⇒ ik-cpa.

Proof.

• lor-ik-cpa 1−→ ik-cpa: Let (sk1, pk1), (sk2, pk2) ← Gen, and consider
ρ(JX, x, yK) .

= JEx,X, x, yK. Then:

JEpk1 ,Epk2 , pk1, pk2K = ρ(JEpk2 , pk1, pk2K)
‌ ρ(JEpk1 , pk1, pk2K) (lor-ik-cpa)
= JEpk1 ,Epk1 , pk1, pk2K.

• ik-cpa 1−→ lor-ik-cpa: Let (sk1, pk1), (sk2, pk2) ← Gen, and consider
ρ(JX,Y, x, yK) .

= JY, x, yK. Then:

JEpk1 , pk1, pk2K = ρ(JEpk1 ,Epk1 , pk1, pk2 M)
‌ ρ(JEpk1 ,Epk2 , pk1, pk2 M) (ik-cpa)
= JEpk2 , pk1, pk2K.

Lemma B.1.7. lor-ind-r-cpa ⇐⇒ ind-r-cpa.

Proof.

• lor-ind-r-cpa 1−→ ind-r-cpa: Let (sk, pk) ← Gen and consider
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ρ(JX, xK) .
= J⟨∗,$⟩ ▷ (X)1,2, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K ≡ J⟨∗,$⟩ ▷ LEpk ▷ ⟨∗,R⟩,EpkM1,2, pk K
= ρ(JLEpk ▷ ⟨∗,R⟩,EpkM, pk K)
‌ ρ(JLEpk,Epk ▷ ⟨R,∗⟩M, pk K) (lor-ind-r-cpa)
= J⟨∗,$⟩ ▷ LEpk,Epk ▷ ⟨R,∗⟩M1,2, pk K

≡ J⟨Epk,E
$
pk ▷R⟩, pk K.

• ind-r-cpa 2−→ lor-ind-r-cpa: Let (sk, pk) ← Gen and consider

ρ1(JX, xK) .
= JLX,ExM, xK and ρ2(JX, xK) .

= JLEx, (X)2,1M, xK. Then:

JLEpk ▷ ⟨∗,R⟩,EpkM, pk K = ρ1(JEpk ▷ ⟨∗,R⟩, pk K)

‌ ρ1(J⟨Epk,E
$
pk ▷R⟩, pk K) (ind-r-cpa)

= JL⟨Epk,E
$
pk ▷R⟩,EpkM, pk K

= JLEpk, ⟨E$
pk ▷R,Epk⟩M, pk K

≡ JLEpk, ⟨Epk,E
$
pk ▷R⟩2,1M, pk K

= ρ2(J⟨Epk,E
$
pk ▷R⟩, pk K)

‌ ρ2(JEpk ▷ ⟨∗,R⟩, pk K) (ind-r-cpa)
= JLEpk, (Epk ▷ ⟨∗,R⟩)2,1M, pk K
≡ JLEpk,Epk ▷ ⟨R,∗⟩M, pk K.

Lemma B.1.8. lor-ik-r-cpa ⇐⇒ ik-r-cpa.

Proof.

• lor-ik-r-cpa 1−→ ik-r-cpa: Let (sk1, pk1), (sk2, pk2)← Gen, and consider
ρ(JX, x, yK) .

= JEx ▷ ⟨∗,R⟩, (X)3,2, x, yK. Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk1 ,Epk2 ▷ ⟨R,∗⟩⟩3,2, pk1, pk2K
= ρ(J⟨Epk1 ,Epk2 ▷ ⟨R,∗⟩⟩, pk1, pk2K)
‌ ρ(J⟨Epk1 ▷ ⟨∗,R⟩,Epk2⟩, pk1, pk2K) (lor-ik-r-cpa)
= JEpk1 ▷ ⟨∗,R⟩, ⟨Epk1 ▷ ⟨∗,R⟩,Epk2⟩3,2, pk1, pk2K
≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K.
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• ik-r-cpa 3−→ lor-ik-r-cpa: Note that, by Lemma 5.3.15, ik-r-cpa 2−→
ulk-cpa. Therefore, we can use

J⟨Epk2 ,Epk2 ▷R⟩, pk2K ‌ JEpk2 ▷ ⟨∗,R⟩, pk2K,

which means we are using ik-r-cpa twice. Let (sk1, pk1), (sk2, pk2)←
Gen, and consider

– ρ1(JX,Y, x, yK) .
= J⟨Y,Ex⟩, y, xK and

– ρ2(JX, xK) .
= J⟨Epk1 , (X)2,1⟩, pk1, x⟩K.

Then:

J⟨Epk1 ▷ ⟨∗,R⟩,Epk2⟩, pk1, pk2K
= ρ1(JEpk2 ▷ ⟨∗,R⟩,Epk1 ▷ ⟨∗,R⟩, pk2, pk1K)
‌ ρ1(JEpk2 ▷ ⟨∗,R⟩, ⟨Epk1 ,Epk2 ▷R⟩, pk2, pk1K) (ik-r-cpa)
= J⟨⟨Epk1 ,Epk2 ▷R⟩,Epk2⟩, pk1, pk2K
≡ J⟨Epk1 , ⟨Epk2 ▷R,Epk2⟩⟩, pk1, pk2K
≡ J⟨Epk1 , ⟨Epk2 ,Epk2 ▷R⟩2,1⟩, pk1, pk2K
= ρ2(J⟨Epk2 ,Epk2 ▷R⟩, pk2K)
‌ ρ2(JEpk2 ▷ ⟨∗,R⟩, pk2K) (ulk-cpa)
= J⟨Epk1 , (Epk2 ▷ ⟨∗,R⟩)2,1⟩, pk1, pk2K
= J⟨Epk1 ,Epk2 ▷ ⟨R,∗⟩⟩, pk1, pk2K.

B.1.3 Variant of Combined Notions
In this section we introduce a different combined notion, ind-ik-r-cpa, that
would result by naturally combining Young and Yung’s ind-r-cpa and
ik-r-cpa notions. We show that together, those two notions imply ind-ik-
r-cpa, and also that ind-ik-r-cpa is implied by the combined notion for
confidentiality and anonymity, ind-ik-cpa, taken together with unlinkability.
All shown relations are summarized in Figure B.1. Nevertheless, ind-ik-r-
cpa is less directly relatable to our composable notions than ind-ik-ulk-cpa.

Definition B.1.9 (ind-ik-cpa).

JEpk1 ,Epk2 , pk1, pk2K ‌ JE$
pk1

,E$
pk1

, pk1, pk2K,

for independent (sk1, pk1), (sk2, pk2)← Gen.
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ind-cpa ind-r-cpa

∧ ind-ik-cpa ∧ ind-ik-r-cpa ∧

ik-cpa ulk-cpa ik-r-cpa

- --

- - -

Figure B.1: Relations among ciphertext-indistinguishability, key-
indistinguishability, and unlinkability.

Definition B.1.10 (ind-ik-r-cpa).

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
‌

J⟨Epk1 ,E
$
pk1

▷R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K,

for independent (sk1, pk1), (sk2, pk2)← Gen.

Lemma B.1.11. (ind-cpa, ik-cpa) ⇐⇒ ind-ik-cpa.

Proof.

• (ind-cpa, ik-cpa)
1,1−−−→ ind-ik-cpa: Let (sk1, pk1), (sk2, pk2)← Gen and

consider ρ(JX, xK) .
= JX,X, x, pk2K. Then:

JEpk1 ,Epk2 , pk1, pk2K ‌ JEpk1 ,Epk1 , pk1, pk2K (ik-cpa)
= ρ(JEpk1 , pk1K)

‌ ρ(JE$
pk1

, pk1K) (ind-cpa)

= JE$
pk1

,E$
pk1

, pk1, pk2K.

• ind-ik-cpa 1−→ ind-cpa: Let (sk, pk), (sk′, pk′) ← Gen, and consider
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ρ(JX,Y, x, yK) .
= JX, xK. Then:

JEpk, pk K = ρ(JEpk,Epk′ , pk, pk′K)

‌ ρ(JE$
pk,E

$
pk, pk, pk

′K) (ind-ik-cpa)

= JE$
pk, pk K.

• ind-ik-cpa 2−→ ik-cpa: Let (sk1, pk1), (sk2, pk2) ← Gen, and consider
ρi(JX1,X2, x, yK)

.
= JEx,X1−i, x, yK, for i ∈ {1, 2}. Then:

JEpk1 ,Epk2 , pk1, pk2K = ρ1(JEpk1 ,Epk2 , pk1, pk2K)

‌ ρ1(JE$
pk1

,E$
pk1

, pk1, pk2K) (ind-ik-cpa)

= JEpk1 ,E
$
pk1

, pk1, pk2K

= ρ2(JE$
pk1

,E$
pk1

, pk1, pk2K)

‌ ρ2(JEpk1 ,Epk2 , pk1, pk2K) (ind-ik-cpa)
= JEpk1 ,Epk1 , pk1, pk2K.

Lemma B.1.12. ind-cpa −̸→ ind-ik-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define

Π′
.
= (Gen′, Enc′, Rnc′, Dec′) as:

• Gen′ .= Gen;

• Enc′pk(m)
.
= (Encpk(m), pk), for any m ∈M;

• Rnc′((c, pk′)) .
= (Rnc(c), pk′), for any (c, pk′) ∈ C × PK;

• Dec′sk((c, pk
′))

.
= Decsk(c), for any (c, pk′) ∈ C × PK;

with corresponding systems E′pk, R
′, and D′sk. Let (sk, pk)← Gen. If Π is

correct, then Π′ is clearly also correct, and if

JEpk, pk K ‌ JE$
pk, pk K,
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then with ρ(JX, xK) .
= JX ▷ ⟨∗, x⟩, xK,

JE′pk, pk K ≡ JEpk ▷ ⟨∗, pk⟩, pk K

= ρ(JEpk, pk K)

‌ ρ(JE$
pk, pk K)

= JE$
pk ▷ ⟨∗, pk⟩, pk K

≡ JE′$pk, pk K.

But clearly, for (sk1, pk1), (sk2, pk2)← Gen,

JE′pk1 ,E
′
pk2 , pk1, pk2K ≡ JEpk1 ▷ ⟨∗, pk1⟩,Epk2 ▷ ⟨∗, pk2⟩, pk1, pk2K

̸‌ JE$
pk1

▷ ⟨∗, pk1⟩,E$
pk1

▷ ⟨∗, pk1⟩, pk1, pk2K

≡ JE′$pk1 ,E
′$
pk1

, pk1, pk2K.

Lemma B.1.13. ik-cpa −̸→ ind-ik-cpa.

Proof. Let Π
.
= (Gen, Enc, Rnc, Dec). For any (sk, pk) ∈ supp Gen, define

Π′
.
= (Gen′, Enc′, Rnc′, Dec′) as:

• Gen′ .= Gen;

• Enc′pk(m)
.
= (Encpk(m),m), for any m ∈M;

• Rnc′((c,m))
.
= (Rnc(c),m), for any (c,m) ∈ C ×M;

• Dec′sk((c,m))
.
= Decsk(c), for any (c,m) ∈ C ×M;

with corresponding systems E′pk, R
′, and D′sk. Let (sk1, pk1), (sk2, pk2)←

Gen. If Π is correct, then Π′ is clearly also correct, and if

JEpk1 ,Epk2 , pk1, pk2K ‌ JEpk1 ,Epk1 , pk1, pk2K,

then with ρ(JX, xK) .
= J⟨X,∗⟩, xK,

JE′pk, pk K ≡ J⟨Epk,∗⟩, pk K

= ρ(JEpk, pk K)

‌ ρ(JE$
pk, pk K)

= J⟨E$
pk,∗⟩, pk K

≡ JE′$pk, pk K.
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But clearly,

JE′pk1 ,E
′
pk2 , pk1, pk2K ≡ J⟨Epk1 ,∗⟩, ⟨Epk2 ,∗⟩, pk1, pk2K

̸‌ J$ ▷ ⟨Epk1 ,∗⟩,$ ▷ ⟨Epk1 ,∗⟩, pk1, pk2K
≡ JE′$pk1 ,E

′$
pk1

, pk1, pk2K.

Lemma B.1.14. (ind-r-cpa, ik-r-cpa) ⇐⇒ ind-ik-r-cpa.

Proof.

• (ind-r-cpa, ik-r-cpa)
1,1−−−→ ind-ik-r-cpa: Let (sk1, pk1), (sk2, pk2) ←

Gen, and consider ρ(JX, xK) .
= JX, ⟨Epk2 , (X)2⟩, x, pk2K. Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
‌ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K (ik-r-cpa)
≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 , (Epk1 ▷ ⟨∗,R⟩)2⟩, pk1, pk2K
= ρ(JEpk1 ▷ ⟨∗,R⟩, pk1K)
‌ ρ(J⟨Epk1 ,E

$
pk1

▷R⟩, pk1K) (ind-r-cpa)

= J⟨Epk1 ,E
$
pk1

▷R⟩, ⟨Epk2 , ⟨Epk1 ,E
$
pk1

▷R⟩2⟩, pk1, pk2K

≡ J⟨Epk1 ,E
$
pk1

▷R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K.

• ind-ik-r-cpa 1−→ ind-r-cpa: Let (sk, pk), (sk′, pk′)← Gen, and consider
ρ(JX,Y, x, yK) .

= JX, xK. Then:

JEpk ▷ ⟨∗,R⟩, pk K = ρ(JEpk ▷ ⟨∗,R⟩,Epk′ ▷ ⟨∗,R⟩, pk, pk′K)
‌ ρ(J⟨Epk,E

$
pk ▷R⟩, ⟨Epk′ ,E

$
pk ▷R⟩, pk, pk

′K)
(ind-ik-r-cpa)

= J⟨Epk,E
$
pk ▷R⟩, pk K.

• ind-ik-r-cpa 2−→ ik-r-cpa: Let (sk1, pk1), (sk2, pk2) ← Gen, and con-
sider

– ρ1(JX,Y, x, yK) .
= JEx ▷ ⟨∗,R⟩,Y, x, yK and
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– ρ2(JX,Y, x, yK) .
= JEx ▷ ⟨∗,R⟩, ⟨Ey, (X)2⟩, x, yK.

Then:

JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K
= ρ1(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K)
‌ ρ1(J⟨Epk1 ,E

$
pk1

▷R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K)
(ind-ik-r-cpa)

= JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K

≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 , ⟨Epk1 ,E
$
pk1

▷R⟩2⟩, pk1, pk2K

= ρ2(J⟨Epk1 ,E
$
pk1

▷R⟩, ⟨Epk2 ,E
$
pk1

▷R⟩, pk1, pk2K)
‌ ρ2(JEpk1 ▷ ⟨∗,R⟩,Epk2 ▷ ⟨∗,R⟩, pk1, pk2K) (ind-ik-r-cpa)
≡ JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 , (Epk1 ▷ ⟨∗,R⟩)2⟩, pk1, pk2K
= JEpk1 ▷ ⟨∗,R⟩, ⟨Epk2 ,Epk1 ▷R⟩, pk1, pk2K.

Lemma B.1.15. ind-r-cpa −̸→ ind-ik-r-cpa.

Proof. Analogous to the proof of Lemma B.1.12.

Lemma B.1.16. ik-r-cpa −̸→ ind-ik-r-cpa.

Proof. Analogous to the proof of Lemma B.1.13.

Lemma B.1.17. (ind-ik-cpa, ulk-cpa)
1,2−−−→ ind-ik-r-cpa.

Proof. Analogous to the proof of Lemma 5.3.13.

Lemma B.1.18. ind-ik-cpa ↚→ ind-ik-r-cpa.

Proof. Analogous to the proofs of both Lemma 5.3.10 and Lemma 5.3.14.

Lemma B.1.19. ind-ik-r-cpa 3−→ ulk-cpa.

Proof. Implied by Lemma B.1.14 and Lemma 5.3.11 (as well as by
Lemma B.1.14 and Lemma 5.3.15, but requires ind-ik-r-cpa four times).

Lemma B.1.20. ulk-cpa −̸→ ind-ik-r-cpa.
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Proof. By Lemma B.1.14, ind-ik-r-cpa 2−→ ik-r-cpa, but by Lemma 5.3.16,
ulk-cpa −̸→ ik-r-cpa, hence ulk-cpa −→ ind-ik-cpa would lead to a contra-
diction.
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